• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

From elliptic operators to sub-elliptic operators

Research Project

Project/Area Number 20K03662
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionOsaka Metropolitan University (2022-2023)
Osaka City University (2020-2021)

Principal Investigator

Furutani Kenro  大阪公立大学, 数学研究所, 特別研究員 (70112901)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords大域解析学 / Fourier 積分作用素 / Clifford 代数 / pseudo H type Lie group / 一様離散部分群 / sub Riemann構造 / sub Laplacian / 国際共同研究 / Radon transformation / Lagrangian submanifold / pseudo H type Lie 群 / lattice / incidence relation / double submersion / Conic singularity / Radon 変換 / sub-Riemann 構造 / sub-Laplacian / pseudo H type Lie 環(群) / 一様離散部部分群 / Fourier積分作用素 / Radon変換 / Incident relation / Fredholm作用素 / Clifford代数 / pseudo H-type群 / Calabi-Yau 構造 / Symplectic 多様体 / polarization / Bargmann 変換 / Lagrange sub-manifold / Cayley projective plane / 不変多項式 / sub-Riemann構造 / Spectral invariants / ベキ零LIe群 / 劣楕円型作用素と熱核
Outline of Research at the Start

楕円型微分作用素は多様体の幾何構造と密接に関連していることが発見されて半世紀余り経ち相当の研究の集積がある。本研究は関連する研究の一つの展開として、楕円型でないが大域的に定義される作用素(sub-Laplacian)とそれを許容する構造を持つ多様体( = sub-Riemann多様体)の関係を研究する。この構造を持つ多様体は限定はされているが多くの主束(principal bundle, 一点の構造を記述している幾何構造と見る)の全空間はその構造も持つ良い性質を持っている場合が多くあり、研究対象は豊富である。そのような多様体の具体例と範疇を明確にし、楕円型の場合には現れなかった不変量とこの構造の不変量の関連を研究する。

Outline of Final Research Achievements

(1) Although we know already that the punctured cotangent bundle of the Cayley projective plane has a Kaehler structure, in this research we showed that the canonical line bundle of this Kaehler structure is homomorphically trivial by constructing no-where vanishing holomorphic 16-form explicitly and by making use of this form we constructed a Bargmann type transformation on the Calyley projective plane.
(2) We could come to the final step for the construction and classification of lattices (or equivalently uniform distcrete subgroups) of the class of nilpotent Lie algebras(groups), which is attached to Clifford algebras. We
are going to fix a manuscript and to publish it after careful discussion with the coauthor by inviting her to Japan under a support of the next JSPS fund.

Academic Significance and Societal Importance of the Research Achievements

(1), (2) は研究成果の(1), (2) に対応する。
(1) 階数1のコンパクト対称空間は多様体の具体例の中でも色々な幾何構造を持っていて、Euclid空間の場合には古典的に研究されている類似の研究結果(大域的な結果)が得られると期待しているが、ここでの研究成果のCayley射影平面が例外群に付随する空間で取り扱いが面倒なように見えるが、他の射影空間の場合との類似点や違いをよく見定めることにより最終結果を得た。
(2) この研究では可能な膨大な組み合わせを記述し、分類方法を明確にすることから出発したが、有限組み合わせであってもその数が膨大になることによる複雑さをいかに取り扱うかに苦心した。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (20 results)

All 2024 2023 2022 2021 Other

All Int'l Joint Research (6 results) Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (10 results) (of which Int'l Joint Research: 5 results,  Invited: 10 results) Funded Workshop (2 results)

  • [Int'l Joint Research] Leibniz University of Hannover(ドイツ)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] University of Bergen(ノルウェー)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Leibniz University of Hanover(ドイツ)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] University of Bergen(ノルウェー)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] University of Bergen(ノルウェー)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] Leibniz University Hannover(ドイツ)

    • Related Report
      2021 Research-status Report
  • [Journal Article] Calabi–Yau structure and Bargmann type transformation on the Cayley projective plane2022

    • Author(s)
      Kurando Baba and Kenro Furutani
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 74 Issue: 4 Pages: 1107-1168

    • DOI

      10.2969/jmsj/86638663

    • ISSN
      0025-5645, 1881-1167, 1881-2333
    • URL

      https://ocu-omu.repo.nii.ac.jp/records/2016914

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] AUTOMORPHISM GROUPS OF PSEUDO H-TYPE ALGEBRAS2021

    • Author(s)
      Furutani Kenro、Markina Irina
    • Journal Title

      Journal of Algebra

      Volume: 20 Issue: 14 Pages: 1-37

    • DOI

      10.1016/j.jalgebra.2020.09.038

    • URL

      https://ocu-omu.repo.nii.ac.jp/records/2016902

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Invariant integral lattices in pseudo H-type Lie algebras:construction and classification2024

    • Author(s)
      古谷賢朗
    • Organizer
      東北大学大学院情報学研究科解析と幾何セミナー、2024年2月7日
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Calabi-Yau structure and Bargmann type transformation on the Cayley projective plane2024

    • Author(s)
      古谷賢朗
    • Organizer
      東北大学大学院情報学研究科解析と幾何セミナー、2024年2月9日
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Calabi-Yau structure and Bargmann type transformation on the Cayley projective plane2023

    • Author(s)
      古谷賢朗
    • Organizer
      名古屋数理情報科学研究会 2023, 07/April/2023
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Radon transformation and Fourier integral operators2023

    • Author(s)
      Kenro Furutani
    • Organizer
      Analysis Seminar, Leibniz University of Hannover, 8/July/2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Invariant integral lattices in pseudo H-type Lie algebras: contractions and classification2023

    • Author(s)
      古谷賢朗
    • Organizer
      東京理科大学野田キャンパス数理科学談話会
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Calabi~Yau structure and Bargmann type transformation on the Cayley projective plane2022

    • Author(s)
      Kenro Furutani
    • Organizer
      Correspondences of various geometries at 奈良女子大学
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Calabi-Yau structure and Bargmann type transformation on the Cayley projective plane2022

    • Author(s)
      Kenro Furutani
    • Organizer
      Analysis seminar at University of Bergen, Norway
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Calabi-Yau structure and Bargmann type transformation on the Cayley projective plane2021

    • Author(s)
      古谷賢朗
    • Organizer
      立命館大学幾何学セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Calabi-Yau structure and Bargmann type transformation on the Cayley projective plane2021

    • Author(s)
      Kenro Furutani
    • Organizer
      Microlocal and Global Analysis, Interactions with Geometry at Potsdam University , Germany
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Calabi-Yau structure and Bargmann type transformation on the Cayley projective plane2021

    • Author(s)
      Kenro Furutani
    • Organizer
      Himeji conference on Partial Differential Equations
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Funded Workshop] Workshop:Global Analysis and Geometry2023

    • Related Report
      2023 Annual Research Report
  • [Funded Workshop] Mini-workshop : Global Analysis and Geometry2023

    • Related Report
      2022 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi