• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

New develpment of spectral and inverse scattering theory-Non linear problems and continuum limit

Research Project

Project/Area Number 20K03667
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionRitsumeikan University

Principal Investigator

Isozaki Hiroshi  立命館大学, 総合科学技術研究機構, プロジェクト研究員 (90111913)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords逆問題 / S行列 / ディリクレ・ノイマン写像 / シュレーディンガー作用素 / 離散グラフ / スペクトル理論 / 散乱理論 / ディリクレーノイマン写像 / 非線形逆散乱 / シュレーディンガー方程式 / ディリクレーノイマンス写像 / 境界制御法
Outline of Research at the Start

非線形波動における特異性の伝播と,離散モデルの連続モデルへの収束を考えることにより,波動方程式の逆散乱問題に関する研究の最先端を推し進めるとともに, 離散と連続の境界領域を開拓する.主要な課題は(1)非線形波動方程式に対する散乱問題において特異性の伝播からリーマン計量を決定する逆問題,(2)格子上の離散化方程式においてメッシュサイズを 0 にした極限によって連続モデルの散乱解が得られることを,ヘルムホルツ方程式の外部境界値問題と周期的離散シュレーディンガー作用素の場合に示すこと,(3)量子グラフにおいて格子点上にデルタ関数型ポテンシャルのキルヒホッフ条件を仮定したときの逆問題である.

Outline of Final Research Achievements

To know the characteristics of our ambient space or physical system by observing the wave propagation is the most fundamental problem in our recognition of the world. In this research, we studied the mathematical properties of various spectral quantities related to the waves on these manifolds and the associated inverse problems to recover the system in question. Our scope ranges over not only continuous manifolds but also on discrete manifolds, i.e. discrete graphs. We solved the inverse scattering problem on non-compact Riemannnian manifolds with general metric, the stationary scattering theory on the elastic equation in the half-space, the inverse problem for Laplacians on discrete graphs, as well as the inverse scattering problem on locally perturbed periodic lattices. We also obtained the asymptotic expansion of solutions to the stationary elastic wave equation in the 3-dimensional half-space and derived the Rayleigh wave propagating only along the surface.

Academic Significance and Societal Importance of the Research Achievements

今日MRI等の画像診断は医療に不可欠なものとなっている.工学的問題において建築物の構造診断の際に音響診断のみならずサーモグラフィー等による遠隔からの非破壊的方法も極めて重要かつ有効である.このような観測データの解析から正しい結果が判定できるかどうかはその背後に確固たる理論的基礎がある場合のみであり、そのための理論的基礎、例えば解の一意性の問題、物理的パラメータの再構成のアルゴリズム、その安定性等を構築するのがこの研究の目的である. それは既知の数学の応用にとどまらず新しい数学的問題と手法の発見、既存の方法の深化等の理論的発展もうながすとともに数値計算にも重要なインパクトを与えるものである.

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (27 results)

All 2024 2023 2022 2021 2020 Other

All Int'l Joint Research (7 results) Journal Article (6 results) (of which Int'l Joint Research: 5 results,  Peer Reviewed: 6 results) Presentation (11 results) (of which Int'l Joint Research: 3 results,  Invited: 7 results) Book (3 results)

  • [Int'l Joint Research] ヘルシンキ大学(フィンランド)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Aix-Marseille 大学(フランス)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] University of Helsinki(フィンランド)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] Aarhus University(デンマーク)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] ヘルシンキ大学(フィンランド)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] Saint-Petersburg State University(ロシア連邦)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] エックスーマルセイユ大学(フランス)

    • Related Report
      2021 Research-status Report
  • [Journal Article] Gelfand’s inverse problem for the graph Laplacian2023

    • Author(s)
      Blasten Emilia、Isozaki Hiroshi、Lassas Matti、Lu Jinpeng
    • Journal Title

      Journal of Spectral Theory

      Volume: 13 Issue: 1 Pages: 1-45

    • DOI

      10.4171/jst/455

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Gel'fand's inverse problem for the graph Laplacian2023

    • Author(s)
      E. Blasten, H. Isozaki, M. Lassas and J. Liu
    • Journal Title

      J. Spectr. Theory

      Volume: -

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Inverse problems for the discrete heat equation and random walks for a class of graphs2023

    • Author(s)
      E. Blasten, H. Isozaki, M. Lassas and J. Liu
    • Journal Title

      SIAM J. Discrete Math.

      Volume: -

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Continuum limit for lattice Schroedinger operators2022

    • Author(s)
      H. Isozaki and A. Jensen
    • Journal Title

      Rev. in Math. Phys.

      Volume: 34 Issue: 02 Pages: 2250001-2250001

    • DOI

      10.1142/s0129055x22500015

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Inverse resonance scattering on rotationally symmetric manifolds2021

    • Author(s)
      H. Isozaki and E. Korotyaev
    • Journal Title

      Asymptotic Analysis

      Volume: 125 Issue: 3-4 Pages: 347-363

    • DOI

      10.3233/asy-201659

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Uniform asymptotic profiles of stationary wave propagation in perturbed two-layered media2020

    • Author(s)
      Hiroshi Isozaki, Mitsuteru Kadowaki and Michiyuki Watanabe
    • Journal Title

      Mathematical Methods in the Applied Sciences

      Volume: 43 Issue: 6 Pages: 2789-2835

    • DOI

      10.1002/mma.5945

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] Scattering in the Penrose diagram2024

    • Author(s)
      H. Isozaki
    • Organizer
      Inverse problems seminar, University of Helsinki
    • Related Report
      2023 Annual Research Report
  • [Presentation] Inverse scattering on non-compact maifolds with general metric2023

    • Author(s)
      H. Isozaki
    • Organizer
      HKIAS Visiting Fellows Lecture Series, HongKong Institute of Sdvanced Study
    • Related Report
      2023 Annual Research Report
  • [Presentation] Continuun limit for lattice Schroedinger operators2023

    • Author(s)
      H. Isozaki
    • Organizer
      Applied Inverse Problems, Goettingen
    • Related Report
      2023 Annual Research Report
  • [Presentation] Rellich type theorem for lattice Schroedinger operators2023

    • Author(s)
      H. Isozaki
    • Organizer
      ICIAM Symposiuum 2023, Tokyo
    • Related Report
      2023 Annual Research Report
  • [Presentation] Wave scattering in the Penrose diagram2023

    • Author(s)
      磯崎 洋
    • Organizer
      Helsinki-Aalto University joint seminar
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Continuum limit for lattice Schroedinger equations2023

    • Author(s)
      磯崎 洋
    • Organizer
      Aix-Marseille University analysis seminar
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Scattering in the Penrose diagram2022

    • Author(s)
      磯崎 洋
    • Organizer
      RIMS共同研究(グループ型A)量子散乱における順問題と逆問題の新展開
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Recent topics on discrete Schroedinger operators2022

    • Author(s)
      磯崎 洋
    • Organizer
      RIMS共同研究(グループ型A)量子散乱における順問題と逆問題の新展開
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] グラフ上のラプラシアンに対する Gel'fand の問題2022

    • Author(s)
      磯崎 洋
    • Organizer
      立命館大学談話会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] グラフラプラシアンに対する Gel'fand 問題2022

    • Author(s)
      磯崎 洋
    • Organizer
      ひこね解析セミナー
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Inverse scattering on non-compact manifolds with general meric2020

    • Author(s)
      磯崎 洋
    • Organizer
      Interational Zoom Inverse Problems seminar
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Book] Many-Body Schriedinger Equation2023

    • Author(s)
      H. Isozaki
    • Total Pages
      399
    • Publisher
      Springer
    • ISBN
      9789819937035
    • Related Report
      2023 Annual Research Report
  • [Book] Inverse spectral and scattering theory --- An introduction2020

    • Author(s)
      Hioshi Isozaki
    • Total Pages
      144
    • Publisher
      Springer-Verlag
    • ISBN
      9789811581984
    • Related Report
      2020 Research-status Report
  • [Book] 解析力学と微分方程式2020

    • Author(s)
      磯崎 洋
    • Total Pages
      320
    • Publisher
      共立出版
    • ISBN
      9784320114012
    • Related Report
      2020 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi