• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Integrated study of generating theorem and local deformation theory of graphs on closed surfaces

Research Project

Project/Area Number 20K03714
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12030:Basic mathematics-related
Research InstitutionNiigata University

Principal Investigator

Suzuki Yusuke  新潟大学, 自然科学系, 教授 (10390402)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordsグラフ / 生成定理 / 局所変形 / 多面体的 / 四角形分割 / 偶三角形分割 / 多面体的グラフ / 閉曲面 / 縮約操作 / 既約グラフ / 三角形分割
Outline of Research at the Start

Wagnerによる「頂点数の等しい平面の三角形分割は対角変形を繰り返すことで互いに移り合う」という結果を皮切りに,グラフの局所変形に関する研究は様々な方向性をもち発展を遂げてきた.一方,グラフの生成定理は,命題を帰納法で証明する際の強力なツールであるがそれ自身も独立した研究テーマである.2017年に発表されたIzmestiev等の論文の中で上記の2つの研究を結びつけるような変形問題が扱われていたが,まだまだ未解決な部分が多い状況である.研究代表者のこれまでの研究を通して得た知識や蓄積したグラフのリスト等を用いて,上記の新たなタイプの変形問題及び近辺の諸問題に取り組みそれらを解決する.

Outline of Final Research Achievements

Starting with Wagner's result in the 1930s, research on local transformations of graphs embedded on closed surfaces has developed in various directions. On the other hand, the generating theorem of graphs is a powerful tool for proving propositions by induction, as in the proof of the Four-Color Theorem, but it is also an independent research topic in its own right. We have obtained some results for the two research topics above, and for problems that lie on the boundary between them. In particular, for polyhedral quadrangulations of closed surfaces, we have succeeded in identifying eight reductional operations to reduce such graphs to a finite number of irreducible graphs. We also proved that any two polyhedral quadrangulations can be transformed into each other by a sequence of local transformations called cubical flips, which vary the number of vertices of graphs.

Academic Significance and Societal Importance of the Research Achievements

組合せトポロジー分野でも,Alexander (1930) による基礎的な結果を出発点に多くの結果が存在している.今回,組合せトポロジーと(我々の)位相幾何学的グラフ理論が接触し,その境界に位置する問題に対する研究成果を出したことは大変意義深い.当該研究は我々が長年蓄積してきた局所変形問題と生成定理,それぞれの結果から得られる知見やグラフのリストを用いて行ったものであり,学術的独自性を持ち価値がある.グラフの変形に関する研究は,離散幾何や計算機科学分野でも盛んにおこなわれており,そこでの問題創出を始め,その進展にも影響を及ぼすことが期待できる.

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (21 results)

All 2024 2023 2022 2021 2020 Other

All Journal Article (5 results) (of which Peer Reviewed: 5 results,  Open Access: 1 results) Presentation (14 results) (of which Int'l Joint Research: 3 results,  Invited: 1 results) Remarks (2 results)

  • [Journal Article] Optimal 1-planar multigraphs2023

    • Author(s)
      Sone Katsuya、Suzuki Yusuke
    • Journal Title

      Discrete Mathematics

      Volume: 346 Issue: 10 Pages: 113553-113553

    • DOI

      10.1016/j.disc.2023.113553

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Finitizable set of reductions for polyhedral quadrangulations of closed surfaces2022

    • Author(s)
      Suzuki Yusuke
    • Journal Title

      Ars Mathematica Contemporanea

      Volume: 23 Issue: 1 Pages: #P1.04-#P1.04

    • DOI

      10.26493/1855-3974.2704.31a

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Q4-irreducible even triangulations of the projective plane2022

    • Author(s)
      Hasegawa Jun、Suzuki Yusuke
    • Journal Title

      Discrete Mathematics

      Volume: 345 Issue: 3 Pages: 112736-112736

    • DOI

      10.1016/j.disc.2021.112736

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] 1-Embeddability of complete multipartite graphs on the projective plane2021

    • Author(s)
      Shibuya Hikari、Suzuki Yusuke
    • Journal Title

      Discrete Mathematics

      Volume: 344 Issue: 9 Pages: 112518-112518

    • DOI

      10.1016/j.disc.2021.112518

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Rhombus tilings of an even-sided polygon and quadrangulations on the projective plane2020

    • Author(s)
      H. Hamanaka, A. Nakamoto and Y. Suzuki
    • Journal Title

      Graphs Combin. 36 (2020), 561\UTF{2013}571.

      Volume: 36 Issue: 3 Pages: 561-571

    • DOI

      10.1007/s00373-020-02137-0

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 与えられたグラフをマイナーにもつ最適1-交差埋め込みについて2024

    • Author(s)
      増田充恭
    • Organizer
      第 20 回組合せ論若手研究集会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 射影平面の最適1-交差埋め込みのマッチング拡張可能性2024

    • Author(s)
      小泉晶平
    • Organizer
      第 20 回組合せ論若手研究集会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Cubical flips in quadrangulations on closed surfaces2023

    • Author(s)
      鈴木有祐
    • Organizer
      35th Workshop on topological graph theory
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] オイラーの公式における多重グラフの扱いと三角形及び四角形埋め込みについて2023

    • Author(s)
      鈴木有祐
    • Organizer
      第 71 回 大阪組合せ論セミナー
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Kn-minors and Kn-subdivisions in optimal 1-planar graphs2023

    • Author(s)
      増田充恭
    • Organizer
      35th Workshop on topological graph theory
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Matching extendability of optimal 1-embeddings on closed surfaces2023

    • Author(s)
      小泉晶平
    • Organizer
      35th Workshop on topological graph theory
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 最適1-平面グラフが含むKn のマイナー及び細分について2023

    • Author(s)
      増田充恭
    • Organizer
      第19回組合わせ論若手研究集会
    • Related Report
      2022 Research-status Report
  • [Presentation] 射影平面の最適1-交差埋め込みのマッチング拡張可能性2023

    • Author(s)
      小泉昌平
    • Organizer
      第19回組合わせ論若手研究集会
    • Related Report
      2022 Research-status Report
  • [Presentation] Partially broken orientations of Eulerian graphs on closed surfaces2022

    • Author(s)
      鈴木有祐
    • Organizer
      Japanese Conference on Combinatorics and its Applications 2022(離散数学とその応用研究集会 2022)
    • Related Report
      2022 Research-status Report
  • [Presentation] 閉曲面上のEulerian graph のpartially broken orientation について2022

    • Author(s)
      鈴木有祐
    • Organizer
      第34回位相幾何学的グラフ理論研究集会
    • Related Report
      2022 Research-status Report
  • [Presentation] 最適1-平面グラフが含むKn のマイナー及び細分について2022

    • Author(s)
      増田充恭
    • Organizer
      第34回位 相幾何学的グラフ理論研究集会
    • Related Report
      2022 Research-status Report
  • [Presentation] 射影平面の最適1-交差埋め込みのマッチング拡張可能性2022

    • Author(s)
      小泉昌平
    • Organizer
      第34回位相 幾何学的グラフ理論研究集会
    • Related Report
      2022 Research-status Report
  • [Presentation] K_nの細分を持つ多重最適1-平面グラフについて2022

    • Author(s)
      増田充恭
    • Organizer
      第18回組合せ論若手研究集会(慶應大学矢上キャンパス,オンラインによる発表)
    • Related Report
      2021 Research-status Report
  • [Presentation] 四角形分割における頂点数の増減のある局所変形問題について2021

    • Author(s)
      鈴木有祐
    • Organizer
      第33回位相幾何学的グラフ理論研究集会(横浜国立大学)
    • Related Report
      2021 Research-status Report
  • [Remarks] YUSUKE SUZUKI (鈴木 有祐)

    • URL

      http://mathweb.sc.niigata-u.ac.jp/~y-suzuki/

    • Related Report
      2023 Annual Research Report
  • [Remarks] YUSUKE SUZUKI(鈴木 有祐)

    • URL

      http://mathweb.sc.niigata-u.ac.jp/~y-suzuki/

    • Related Report
      2022 Research-status Report 2021 Research-status Report 2020 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi