Project/Area Number |
20K03719
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 12030:Basic mathematics-related
|
Research Institution | Kumamoto University |
Principal Investigator |
Momihara Koji 熊本大学, 大学院先端科学研究部(理), 准教授 (70613305)
|
Co-Investigator(Kenkyū-buntansha) |
丸田 辰哉 大阪公立大学, 理学(系)研究科(研究院), 教授 (80239152)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | アダマール行列 / 有限幾何 / 2-交差集合 / 差集合族 / ガウス和 / 強正則グラフ / アソシエーションスキーム / divisible design graph / 自己双対符号 / 歪みアダマール行列 / D-最適性 / 差集合 / 均整アダマール行列 |
Outline of Research at the Start |
これまでの研究で,「群の作用」と「ガウス和の計算」を併用した高次元有限射影空間における超平面交差数の計算法を考案してきた. この手法を発展・応用し, 2-交差集合を用いたアダマール行列の既存の幾何学的構成法を高次元化することで, 平方数次均整アダマール行列を組織的に生成する新たな構成法を開発する. また, 申請者の最近の研究で, アソシエーションスキームを通じ, (4×非平方数)次アダマール行列と均整アダマール行列との関係性が明らかになってきた. 本研究では, その関係に基づき, アソシエーションスキームの枠組みの中で, (4×非平方数)次アダマール行列を組織的に構成する手法・理論を確立する.
|
Outline of Final Research Achievements |
The objective of this research project is to build a theory for generating new Hadamard matrices by generalizing known geometric constructions of Hadamard matrices using two-intersection sets in finite projective spaces and by giving new constructions of Hadamard matrices based strongly regular graphs and association schemes. In this research, we found new methods to construct geometric objects using actions of finite groups and power residues of finite fields and gave new characterizations for Gauss sums and Gauss periods to compute hyperplane sections. In particular, we succeeded to find families of new Hadamard matrices. Furthermore, we proposed new constructions of strongly regular graphs and association schemes related to Hadamard matrices. Thus, we developed the existence theory of Hadamard matrices and related combinatorial objects.
|
Academic Significance and Societal Importance of the Research Achievements |
アダマール行列は, 符号・デザイン・グラフ・格子等の構成に用いられる重要な離散構造であり, 新たなアダマール行列や関連する組合せ構造の発見が, これらの分野における様々な問題を解決する可能性もあり, 多くの付加的成果を生み出すという点で本研究成果には重要な意義がある. また, 有限幾何やガウス和をはじめとする整数論における研究成果は, 組合せ論における様々な構造の存在証明に応用できる潜在的可能性もあり, 重要な価値がある. 更には, アダマール行列は, 統計における分散分析・情報通信における周波数信号処理等, 情報科学分野に多くの応用があるため, 幅広く社会に貢献することが期待される.
|