• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies of dynamic programming partial differential equations related to optimal control in path-dependent systems

Research Project

Project/Area Number 20K03733
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12040:Applied mathematics and statistics-related
Research InstitutionKumamoto University (2021-2023)
Osaka University (2020)

Principal Investigator

Kaise Hidehiro  熊本大学, 大学院先端科学研究部(理), 教授 (60377778)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2023: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords最適制御 / 動的計画法 / 動的計画偏微分方程式 / 粘性解 / 経路依存系 / 非線形偏微分方程式
Outline of Research at the Start

最適制御は刻々と変化する系の状態を所与の基準に従って制御することを目標とし、動的計画法や動的計画偏微分方程式は、最適制御問題における制御主体者の最適戦略(制御器)を設計するために基本的である。本研究では、系の状態の時間発展や基準が現時刻のみならず過去の状態履歴に依存するような種々の最適制御問題における動的計画法や動的計画偏微分方程式の数学的基礎研究を行う。

Outline of Final Research Achievements

Optimal control is the theory to control time-varying states of systems under given criteria. In usual optimal control, it is assumed that systems have Markov property which means the future state of the system is determined by the current state. On the other hand, path-dependent systems where future states also depend on past states attract interests of researchers in various fields including engineering. In this research project, we obtained results on dynamic programming methods for path-dependent systems, also for systems which are not included in conventional frames of systems.

Academic Significance and Societal Importance of the Research Achievements

動的計画法は、主体者が系の状態をコントロールするための強力な手法である。マルコフ性を持つ系に対する動的計画法に関しては膨大な研究成果があり、様々な分野の問題を動機として今もなお多くの研究者により研究がなされているが、経路依存系に対する動的計画法の一般論の研究は少ない。本研究課題では、経路依存性を持つ系に関連する動的計画偏微分方程式の研究を行い、経路依存系における基準の最適値を求めるための基礎理論を築いた。また、複素空間を状態空間に持つ系に対する動的計画法を進展させた。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (16 results)

All 2023 2022 2021 2020 Other

All Int'l Joint Research (8 results) Journal Article (3 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 3 results) Presentation (5 results) (of which Int'l Joint Research: 4 results,  Invited: 2 results)

  • [Int'l Joint Research] カリフォルニア大学サンディエゴ校(米国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] CIMAT数学研究センター(メキシコ)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] CIMAT数学研究センター(メキシコ)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] カリフォルニア大学サンディエゴ校(米国)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] メルボルン大学(オーストラリア)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] CIMAT数学研究センター(メキシコ)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] カリフォルニア大学サンディエゴ校(米国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] メルボルン大学(オーストラリア)

    • Related Report
      2020 Research-status Report
  • [Journal Article] Convergence of discrete-time deterministic games to path-dependent Isaacs partial differential equations with quadratically growing Hamiltonians2022

    • Author(s)
      H. Kaise
    • Journal Title

      Applied Mathematics & Optimization

      Volume: 86 Issue: 1 Pages: 1-49

    • DOI

      10.1007/s00245-022-09829-4

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Solution existence and uniqueness for degenerate SDEs with application to Schrodinger-equation representations2021

    • Author(s)
      P.M. Dower, H. Kaise, W.M. McEneaney, T. Wang, R. Zhao
    • Journal Title

      Communications in Information and Systems

      Volume: 21 Issue: 2 Pages: 297-315

    • DOI

      10.4310/cis.2021.v21.n2.a6

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Strong solution existence for a class of degenerate stochastic differential equations2020

    • Author(s)
      W.M. McEneaney, H. Kaise, P.M. Dower, R. Zhao
    • Journal Title

      Proceedings of 21st IFAC World Congress

      Volume: 1 Pages: 1-5

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Comparison theorems for viscosity solutions of Hamilton-Jacobi equations with co-invariant derivatives of fractional orders2023

    • Author(s)
      H. Kaise
    • Organizer
      SIAM Conference on Control and its Applications
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Comparison theorems for viscosity solutions of Hamilton-Jacobi equations with co-invariant derivatives of fractional orders2023

    • Author(s)
      H. Kaise
    • Organizer
      The Eleventh Meeting on Probability and PDE
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Zero-sum games intermediate Hamiltonian in path-dependnet deterministic systems2022

    • Author(s)
      H. Kaise and D. Hernandez-Hernandez
    • Organizer
      International Conference “Optimal Control Theory and Applications”
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Viscosity solutions of Hamilton-Jacobi-Bellman PDEs for fractional-order systems2021

    • Author(s)
      H. Kaise
    • Organizer
      SIAM Conference on Control and its Applications
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Partially observed H-infinity control for discrete-time path-dependent systems: A small noise limit of risk-sensitive stochastic control2021

    • Author(s)
      H. Kaise
    • Organizer
      The 53rd ISCIE International Symposium on Stochastic Systems Theory and its Applications
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi