• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Packing of two dimensional sheet: structural analysis of crumple paper sheet

Research Project

Project/Area Number 20K03882
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 13040:Biophysics, chemical physics and soft matter physics-related
Research InstitutionKyushu University

Principal Investigator

Nakanishi Hiizu  九州大学, 理学研究院, 名誉教授 (90155771)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2022: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2021: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywordsパッキング / クランプリング / フラクタル構造 / ランダムウォーク / 折りたたみ
Outline of Research at the Start

パッキング問題の一つの例として、平らな紙が無作為に丸められて押しつぶされたときに取る構造を解析する。具体的には、無造作に丸めて押しつぶされた紙をマイクロCTにかけて内部構造の3次元データを取得し、それを画像解析して3次元構造を抽出する。その結果を、統計物理で用いられてきた概念や手法でモデル化し、丸めた紙の3次元構造の特徴を明らかにする。

Outline of Final Research Achievements

We have performed experiments, numerical simulations, and theoretical analysis on the packing problem of two dimensional paper sheets squeezed into small space.
We obtained 2.7 for the mass fractal dimension, which characterizes relationship among the structure of crumpled sheets with different sizes, and 2.5 ~2.8 for the fractal dimension, which characterizes the mass distribution of each crumpled sheet. Within the precision of the present experiments, these two dimensions are approximately the same. We also obtained 0.9 for the Hurst exponent in the short length scale, but it has not been clear how the Hurst exponent might be related with the mass fractal dimension and/or the fractal dimension.

Academic Significance and Societal Importance of the Research Achievements

丸めた新聞紙が梱包の際の充填材として有用であることは誰でも経験があるだろう。丸めた新聞紙は非常に軽くてしかも圧縮に対して大きな抵抗を示し、この性質は丸めた紙がフラクタル構造をしていることと関係している。
また、より一般的に空間的に広がった物体を狭いスペースに押し込んだ時どうなるかという問題は、パッキング問題として研究されており、1次元物体の場合にはDNAの閉じ込め問題とも関連して興味を持たれてきた。明らかに物体の次元性はパッキング問題には重要で、1次元の場合と2次元の場合のパッキング問題の類似性と相違点を明らかにする意義は深い。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (3 results)

All 2023 2021 Other

All Int'l Joint Research (1 results) Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (1 results) (of which Int'l Joint Research: 1 results)

  • [Int'l Joint Research] Niels Bohr Institute(デンマーク)

    • Related Report
      2022 Research-status Report
  • [Journal Article] Fold analysis of crumpled sheets using microcomputed tomography2021

    • Author(s)
      Hayase Yumino、Aonuma Hitoshi、Takahara Satoshi、Sakaue Takahiro、Kaneko Shun'ichi、Nakanishi Hiizu
    • Journal Title

      Physical Review E

      Volume: 104 Issue: 2 Pages: 025005-025005

    • DOI

      10.1103/physreve.104.025005

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Presentation] Fold analysis of crumpled sheets using microcomputed tomography2023

    • Author(s)
      Hiizu Nakanishi
    • Organizer
      STATPHYS28
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi