Project/Area Number |
20K04186
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 18010:Mechanics of materials and materials-related
|
Research Institution | Meiji University |
Principal Investigator |
NOTOMI MITSUO 明治大学, 理工学部, 専任教授 (70218288)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2023: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | Mg系水素貯蔵材料 / 水素吸蔵材料 / マグネシウム / 鉄 / グラフェン / グラファイト / 水素貯蔵材料 / Mg-Fe / Graphite / Grahene / Mg系合金 / Nanoconfinement / Mg系積層薄膜 |
Outline of Research at the Start |
水素を固体に固定化する手法は,化学吸着,物理吸着,Kubas結合,Nanoconfinementの4種類が知られている。これまで,Mgに水素を化学吸着する方法に対して遷移金属の積層や合金化により水素吸蔵量と水素放出温度の改善を試み,一定の成果を得たが十分ではなかった。そこで本研究では水素貯蔵時に水素化物が不安定化するようにNanoconfinement効果を応用した水素貯蔵材料を開発する。さらに,Nanoconfiementのメカニズムを検討するためにナノオーダーの膜厚のMg/遷移金属/高分子積層薄膜を開発し,水素透過度を測定することによってNanoconfinement現象を追求する。
|
Outline of Final Research Achievements |
We aimed to develop a Mg-based hydrogen storage material that utilizes the nanoconfinement effect. First, Mg/Fe-based and Mg/Al-based thin films were fabricated using resistance heating vacuum evaporation and PLD. As a result, the Mg/Fe/Pd multilayer film showed a maximum hydrogen storage capacity of 5.58 wt.%, and the Mg/Al/Pd multilayer film showed a maximum hydrogen storage capacity of 3.0 wt.%. Next, Mg-Fe-carbon compound powder was prepared using a mechanical alloying method. As a result, Mg-C60-Fe powder is up to 3 wt.%, Mg-Fe-Gr powder is up to 4 wt.%, Mg-Fe-Graphene powder is up to 4 wt.%, Mg-Fe-reduced Graphene oxide powder showed a hydrogen storage capacity of 4 wt.%.
|
Academic Significance and Societal Importance of the Research Achievements |
水素貯蔵材料の開発にはNanoconfinement効果が有力視され,従来の水素貯蔵量を凌駕する報告もある。そこで,この効果を活かすために,積層薄膜と粉体という二つのアプローチをとり,水素貯蔵量がMgの理論吸蔵量に近づきつつ,水素放出温度の約100℃の低減と水素放出速度の大幅な改善が達成できることを示した.これは今後の水素貯蔵材料開発指針を示すものである.さらにこの知見は水素窒素分離膜の開発に活かすことができると考え,まずはベースとなる高分子材料の水素透過度測定を行い,その方向性を示すことができた.
|