Project/Area Number |
20K04227
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 18030:Design engineering-related
|
Research Institution | Meiji University |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
|
Keywords | アディティブマニュファクチャリング / 曲面積層 / 連続繊維 / セルロースナノファイバー / 生分解性 / 双腕ロボットアーム / 造形パス / セルロースファイバー / ロボット積層造形 / 積層造形 / 繊維配置 / 位相モデル |
Outline of Research at the Start |
セルロースナノファイバー(CNF)は紙や木材をナノサイズにまで細かくした繊維であり、強度が高く軽量で、しかも自然に優しい素材であることから、次世代の材料として注目を集めている。そこで申請者らは、CNF材料を糸状の連続繊維にして積層造形する方法を考案し、製作に成功した。しかし強度が繊維の向きによって大きく異なるので、強度設計法の確立が急務である。本研究では、強度が得やすくなるよう、物体を包み込むように繊維を配置する曲面積層法を採用した上で、目的の強度に見合う繊維配置設計法を構築する。さらに、計画された配置方法に従って6軸ロボットで物体を製作し、実際に強度評価を行って設計法の有効性を検証する。
|
Outline of Final Research Achievements |
For a manufacturing method to apply cellulose nano-fiber (Cellulose Nano-Fiber, CNF), which has a bio-degradable property, to mechanical parts, an additive manufacturing method with continuous fibers and plastics was focused on. The design method for placing the continuous fiber was established, and the fabrication method was developed with evaluation of fabricated objects. In the design method, two approaches for placement of continuous fibers were considered. One is to use slicing from shape models, and another is to use computational design. In the fabrication system, multi-axis device with robot arms was developed and it realized curved-surface deposition. Additionally, composite materials with CNF continuous fibers and poly-lactic acid were developed and the fabrication by the developed system with the developed materials was realized.
|
Academic Significance and Societal Importance of the Research Achievements |
積層造形(Additive Manufacturing, AM)は従来の加工方法では実現できない形状での設計を可能にすることから革新的な製品やサービスのキーテクノロジーとして大きな期待がされている。その一つに軽量設計など少ない材料による設計を可能にすることがあり、環境負荷を減らす製品設計が期待されている。本研究では、生分解性材料を有し、高強度なCNF材料用いたAMの技術開発を行った。これは従来にない程度に生分解性材料で高強度に自由な形状を実現するAM技術として学術的に意義あり、また環境負荷軽減の設計推進に寄与することから、社会的にも大きな意義がある。
|