Project/Area Number |
20K04252
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 18040:Machine elements and tribology-related
|
Research Institution | Suzuka National College of Technology |
Principal Investigator |
Yokoyama Haruki 鈴鹿工業高等専門学校, 電気電子工学科, 教授 (20583701)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | マイクロアクチュエータ / 構造相転移 / 二酸化バナジウム / マグネトロンスパッタ / 相転移 / 熱処理 |
Outline of Research at the Start |
二酸化バナジウム(VO2)は絶縁物から金属に構造相転移する物質として知られている。本研究では、VO2ターゲットを用いたスパッタリング法でVO2薄膜の作製を行い、堆積中断技術を用いてVO2薄膜の平坦化を行う。また、金属/VO2薄膜/金属の積層構造の作製を行い、相転移の電圧制御を可能にする。さらに、この金属/VO2薄膜/金属の積層構造を、微細プロセス技術を用いて加工することで、構造相転移を電圧で制御する新規高機能マイクロアクチュエータを作製するとともに、その動作を実証する。
|
Outline of Final Research Achievements |
In this study, we fabricate a vanadium oxide thin films using magnetron sputtering and improve their quality by heat treatment. X-ray diffraction reveals that the as-deposited thin film is amorphous or microcrystalline. It is found that heat treatment has the effect of promoting crystallization, and that VO2 and V2O5 are formed by heat treatment at 400℃ or higher. From the evaluation of temperature change in resistance ratio in samples heat-treated at 400°C or higher, a rapid change in resistivity ratio which is thought to be caused by phase transition is observed from 65°C to 75°C. Furthermore, the bandgap becomes very close to that of the π band of VO2 by heat treatment at 400°C or higher.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究により、マグネトロンスパッタ法を用いて作製した酸化バナジウム薄膜の高品質化を行うための最適な熱処理条件を把握することができた。本研究の実施期間とコロナ禍が重なったため、研究計画に大幅な遅れが生じたが、今後も研究を継続し、高品質の金属/VO2薄膜/金属の積層構造作製技術、プロセス技術を構築し、VO2の構造相転移を利用した電圧で駆動する新しい高機能マイクロアクチュエータを実現する。電圧制御で駆動するVO2薄膜を利用したマイクロアクチュエータが実現すれば世界初の報告になり、マイクロロボテックスやバイオミメティクスの分野へ大きな影響を与えると思われる。
|