Project/Area Number |
20K04272
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 19010:Fluid engineering-related
|
Research Institution | The University of Kitakyushu |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 超音速流れ / 衝撃波 / 超音速噴流 / 流れの可視化計測 / レインボーシュリーレン偏向法 / レインボーシュリーレン / 密度測定 / マイクロジェット / 光学的可視化計測 / 非対称ノズル / 密度計測 |
Outline of Research at the Start |
超音速マイクロジェットは,航空宇宙分野ではジェットエンジンからの排気騒音の低減,医療分野では肺への酸素供給としての利用が期待されており,数多くの研究が行われている.一般に,ノズル出口から音速を超える流れが流出する場合には,流れ場の内部に衝撃波が現れ,衝撃波と自由せん断層との干渉により流れ場は非常に複雑となる.また,超音速マイクロジェットでは,ノズル内部の流れの粘性がジェットの構造に強く影響を及ぼすことが予想できるが,それについてはほとんどわかっていない.本研究では,実験と計算の両方から超音速マイクロジェットの定常および非定常の3次元構造を解明する.
|
Outline of Final Research Achievements |
In this study, the three-dimensional structure of supersonic microjets emerging from convergent nozzles with circular and square cross sections was investigated experimentally and numerically by rainbow schlieren deflectometry and large eddy simulation. As a result, the shock-cell length, the supersonic length, the maximum Mach number in the jet and its position in the direction of flow, and the position of the Mach disk were determined as a function of the nozzle pressure ratio for the microjets from circular and rectangular nozzles. The flow fields of supersonic microjets from circular and square convergent nozzles in under-expanded conditions were found to exhibit unsteady characteristics of spiral modes.
|
Academic Significance and Societal Importance of the Research Achievements |
現時点において、円形および矩形超音速マイクロジェットの3次元密度場の取得に成功した研究報告は、国内および国外においても全くない。しかし、本申請者が開発した装置では、各種の断面形状をもつノズルからの超音速マイクロジェットに対して、高空間分解能で3次元の密度場を取得することが可能である。本研究の成果は次世代航空機用スクラムジェットエンジンの燃料噴射ノズルの効率化や他分野(冶金工学,農工業など)への波及を通じて,流体工学の発展と応用に貢献することが期待できる.
|