Innovative enhancement of titania-based fuel cell electrode performances
Project/Area Number |
20K04299
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 19020:Thermal engineering-related
|
Research Institution | Hirosaki University |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 固体高分子形燃料電池 / 酸素還元反応 / カソード / 窒化チタン / 酸化チタン / 酸窒化物 / 仕事関数 / 酸素還元 / 非白金 / ルチル / 異元素置換 / チタニア |
Outline of Research at the Start |
固体高分子形燃料電池(Polymer Electrolyte Fuel Cell, PEFC)正極における白金-コバルト担持炭素触媒の希少性・低耐久性を同時に解決するため、炭素担体を利用せずに酸化チタン系非貴金属触媒を高性能化する。 複数種の異元素をチタンサイトならびに酸素サイトへ置換導入し、その組成・化学状態を精密に制御することにより、0.9 Vで44mA/cm2の電流密度を得る。
|
Outline of Final Research Achievements |
Oxide catalysts have attracted increasing attentions as they are durable against highly acidic environments and high potentials in polymer electrolyte fuel cell cathodes while their oxygen reduction reaction activities remained lower than that of currently available platinum-cobalt catalysts. In this study, we focused on abundant and highly conductive titania catalysts and the activity and durability were enhanced by substituting several elements for titanium and oxygen ions in titania. Phosphorus doping level of phosphorus and nitrogen co-doped titania catalysts were controlled by the starting material and both the initial activity and durability against startup/shutdown cycles were enhanced by increasing the surface phosphorus doping level. Further, the work function was controlled by doping foreign metals to increase the selectivity toward four electron reaction and thus to improve the startup/shutdown durability.
|
Academic Significance and Societal Importance of the Research Achievements |
固体高分子形燃料電池は既に実用化されたものの、その正極に用いられている白金コバルト触媒の希少性と炭素担体の低い耐久性が普及拡大への障壁となっている。白金と炭素担体をいずれも用いない酸化チタン系触媒は上記障壁を乗り越える可能性があるが、性能が不十分だった。 その表面におけるリンの置換導入量を開始材料により制御することにより、高性能化することを示した点が本研究の第一の学術的意義である。さらに異種金属を置換導入することで仕事関数を制御し、反応機構を四電子反応に近づけて耐久性を向上させられることを解明した点が第二の意義である。安価で簡易な手法で本格普及への課題解決の可能性を示した点が社会的意義である。
|
Report
(4 results)
Research Products
(5 results)