• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Self-optimization of Resource Allocation for sixth-generation mobile communication system

Research Project

Project/Area Number 20K04466
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 21020:Communication and network engineering-related
Research InstitutionKagawa University

Principal Investigator

Miki Nobuhiko  香川大学, 創造工学部, 教授 (90709247)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywords凸最適化 / プロポーショナルフェアネス / 機械学習 / 無線リソース割り当て / 無線リソース制御 / 6G / 自動最適化
Outline of Research at the Start

第六世代移動通信(6G)では,更なる高速・大容量化に加え,自動車やドローンといった様々なモノを接続する基盤技術に進化した5Gを更に拡張する必要がある.この実現には,端末の種類・数の大幅な増大,高速・大容量化のための基地局数の増加,周波数の広帯域化が必須である.
従って,周波数・基地局・端末の最適な組み合わせをネットワーク全体で最適化する必要があり,これは5Gよりも更に困難となる.
そこで本研究では,この最適化を端末・基地局の測定結果に基づいて自動的に最適化するアルゴリズムを凸最適化,機械学習等を用いて確立する.

Outline of Final Research Achievements

In order to achieve higher speed and capacity with 6G than with 5G, it is necessary to further increase the frequency bandwidth and network density. Under such conditions, it is essential to optimize the entire mobile network. In this study, we proposed an algorithm that optimize the network based on the proportional fair criteria.
The main features of the proposed algorithm are (1) it combines the advantages of both machine learning and convex optimization, and (2) it is an optimization algorithm that uses realistic information based on signaling between base stations and between base stations and terminals, as specified in 5G.
We confirm the effectiveness of the proposed algorithm based on the computer simulations.

Academic Significance and Societal Importance of the Research Achievements

移動通信システム全体に対して凸最適化を適用することで,プロポーショナルフェアネス規範に基づく最適解を導出することは可能であるが,非現実的な仮定が含まれている.
本研究では,凸最適化の最適解を導出できる特長を用いつつ,干渉適用時の分散制御の適用,セル選択規範に与えるオフセット値の機械学習による最適化を用いることにより,現実的なアルゴリズムを実現している.
本研究は,最適解との比較を通して現実的なアルゴリズムでどの程度まで最適解に近い特性を実現できるかを明確化している点が学術的に意義があり,現実的な基地局-基地局間,基地局-端末間のシグナリングに基づき最適化を行なっている点に社会的意義があると考える.

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (9 results)

All 2024 2023 2021 2020

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (8 results) (of which Int'l Joint Research: 4 results)

  • [Journal Article] Investigation on Distributed Joint Optimization of Resource Allocation and Inter-Cell Interference Coordination Based on Proportional Fair Criteria2024

    • Author(s)
      松本 拓也、三木 信彦
    • Journal Title

      電子情報通信学会論文誌B 通信

      Volume: J107-B Issue: 3 Pages: 200-208

    • DOI

      10.14923/transcomj.2023GWP0014

    • ISSN
      1881-0209
    • Year and Date
      2024-03-01
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Presentation] Investigation on Offset Optimization for Cell Range Expansion Using Neural Networks in Conjunction with Convex Optimization2023

    • Author(s)
      Mitsuto Sato, Yuki Kusaka, Nobuhiko Miki
    • Organizer
      2023 VTS Asia Pacific Wireless Communications Symposium (APWCS)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Impact of Biased User Distribution on Offset Values Using Neural Network2023

    • Author(s)
      Mitsuto Sato, Yuki Kusaka, Nobuhiko Miki
    • Organizer
      2023 International Conference on Emerging Technologies for Communications (ICETC 2023)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] セルレンジ拡張におけるNeural Networkを用いるオフセット最適化に関する特性評価2023

    • Author(s)
      佐藤光斗,日下祐喜,三木信彦
    • Organizer
      電子情報通信学会無線通信システム研究会
    • Related Report
      2023 Annual Research Report
  • [Presentation] セルレンジ拡張におけるPF metricのNeural Networkを用いた近似法2023

    • Author(s)
      日下祐喜,三木信彦
    • Organizer
      電子情報通信学会無線通信システム研究会
    • Related Report
      2022 Research-status Report
  • [Presentation] Performance Evaluation of Neural Network-based Offset Optimization in Cell Range Expansion for Multiple Frequency Bands2021

    • Author(s)
      Ryuya Sembo; Nobuhiko Miki
    • Organizer
      2021 IEEE VTS 17th Asia Pacific Wireless Communications Symposium (APWCS), 2021
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] 無線リソース割り当てにおける最適化アルゴリズムの検討2020

    • Author(s)
      三木信彦,田渕翔也,牧野一生
    • Organizer
      無線通信システム研究会
    • Related Report
      2020 Research-status Report
  • [Presentation] 6Gに向けた無線スケジューリングと基地局間協調技術の基礎2020

    • Author(s)
      三木信彦
    • Organizer
      電子情報通信学会 総合大会
    • Related Report
      2020 Research-status Report
  • [Presentation] Combined Usage of Convex Optimization and Neural Network for Resource Allocation2020

    • Author(s)
      S. Tabuchi, I. Makino and N. Miki
    • Organizer
      International Conference on Signal Processing and Communication Systems (ICSPCS)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi