• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A study on drastic improvement of optical fiber transmission performance using deep learning

Research Project

Project/Area Number 20K04532
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 21040:Control and system engineering-related
Research InstitutionTokyo Institute of Technology

Principal Investigator

Uenohara Hiroyuki  東京工業大学, 科学技術創成研究院, 教授 (20334526)

Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Keywords光ファイバ通信 / 非線形歪補償 / 畳み込みニューラルネットワーク / 光信号伝送 / 歪補償 / 深層学習 / 光非線形歪補償 / リアルタイム処理
Outline of Research at the Start

光ファイバ通信システムの受信光信号の線形・非線形歪の補償性能を既存デジタル信号処理手法よりも抜本的に向上可能な、深層学習導入によるリアルタイム処理手法の実現を目指す。画像イメージからの対象抽出能力の高い深層学習導入し、既存のデジタル・コヒーレント検波の性能を抜本的に改善する可能性を追究する。線形・非線形歪の前後のシンボル種類による影響を事前学習させ、受信光信号のリアルタイムな処理が可能なサンプリング・レートとAD変換の量子化ビット数を考慮に入れて、サンプリング後に信号再構築過程を導入し、畳み込みニューラルネットワークにおいてリアルタイム処理が可能な高速リサンプリング手法の適用可能性を示す。

Outline of Final Research Achievements

We aimed at improving the nonlinear compensation performance drastically for optical fiber transmission by using high recognition feature of deep learning compared with that of the conventional digital backpropagation method. First, for the reference, ANN was used, and the effective conditions of the sampling rate and the simultaneous number of input symbols, the number of neurons, and the number of epochs were obtained. Next, two-dimensional CNN was investigated, and input data were assigned to In-phase and Quadrature-phase components with time transient information. Introduction of majority vote was found to improve the performance. We have found that the performance of two-dimensional CNN indicating on complex plane or using I-Q-components in parallel both are superior to that of linear compensation only, in the same level compared with DBP with 1step/span, but in the middle between DBP with 1step/span and 2steps/span. Layer construction should be investigated further.

Academic Significance and Societal Importance of the Research Achievements

光ファイバ通信システムの受信光信号の線形・非線形歪の補償性能を既存デジタル信号処理手法よりも抜本的に向上可能な、深層学習導入によるリアルタイム処理手法の実現を目指している。対象抽出能力の高い深層学習を導入し、既存のデジタル逆伝搬法の性能を改善する可能性を追究した。対象シンボル前後の情報による影響を事前学習させ、サンプリングレートと連続入力シンボル数を考慮に入れて、サンプリング後に信号再構築過程を導入し、人工ニューラルネットワーク、1次元あるいは2次元畳み込みニューラルネットワークにおいて、限定的ではあるが既存のデジタル逆伝搬法よりも補償性能の高い可能性を見出している。

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (1 results)

All 2020

All Presentation (1 results)

  • [Presentation] ニューラルネットワーク導入による長距離伝送光受信信号の復調性能検討(学習データによる汎化性能)2020

    • Author(s)
      上野信明,植之原裕行
    • Organizer
      2020年電子情報通信学会ソサイエティ大会
    • Related Report
      2020 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi