Project/Area Number |
20K04569
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 21050:Electric and electronic materials-related
|
Research Institution | National Institute for Materials Science |
Principal Investigator |
WEN Zhenchao 国立研究開発法人物質・材料研究機構, 磁性・スピントロニクス材料研究拠点, 主任研究員 (40784773)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2021: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2020: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | Tunnel junctions / Antiferromagnetic / Tunnel magnetoresistance / Antiferromagnetic films / Antiferromagnet |
Outline of Research at the Start |
This research will study the mechanisms of magnetoresistance effects in antiferromagnetic tunnel junctions and a large magnetoresistance will be achieved by investigating the fundamental mechanisms of magnetoresistance in the AFMTJs. 2-terminal antiferromagnetic memory cells will be developed.
|
Outline of Final Research Achievements |
The development of antiferromagnetic material-based tunnel junction devices is of particular importance for scaling down bit sizes for ultrahigh-density non-volatile memories. This research focuses on developing antiferromagnetic materials/heterostructures for tunnel junctions and elucidating their magnetoresistance effects. Two cases are explored: antiferromagnetic FeRh and 111-textured noncolinear antiferromagnetic Mn75Ir25. Relatively high tunneling magnetoresistance ratios are achieved with an unusual bias dependence in FeRh-based tunnel junctions, where the interface Fe-rich termination layers and interface resonance tunneling play important roles. The Mn75Ir25-based tunnel junctions show room-temperature tunneling anisotropic magnetoresistance. Epitaxial growth of antiferromagnetic Mn75Ir25 and RuO2 films is also achieved. The findings provide valuable insights into the realization of ultrahigh-density memory devices and spintronic applications using antiferromagnetic materials.
|
Academic Significance and Societal Importance of the Research Achievements |
トンネル接合素子に向けて、様々な反強磁性材料を研究し、磁気抵抗輸送に関連する多岐にわたる結果を得た。これにより物理学の理解が深まり、高密度なメモリデバイスの実現が潜在的に可能となる。特に、反強磁性体界面における現象である界面軌道共鳴トンネルやトンネル異方性磁気抵抗などに着目し、高いトンネル磁気抵抗やトンネル異方性磁気抵抗を実現した。これらの研究成果は、スピントロニクス分野に限らず、材料科学や物理学など幅広い分野に影響を与え、学術的な価値が高い。また、これらの成果は、低消費電力動作や高速・大容量情報処理を実現するためのスピントロニクスデバイスの基盤技術として、社会的にも重要な意義を持っている。
|