Prediction of damage to tide protection facilities due to liquefaction in the lowlands of eastern Tokyo
Project/Area Number |
20K04682
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 22030:Geotechnical engineering-related
|
Research Institution | Kobe University |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2022: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
|
Keywords | 地震応答解析 / 過圧密比 / 機械学習 / 液状化 / 地盤モデル / ゼロメートル地帯 |
Outline of Research at the Start |
江東デルタの低平地には地下水くみ上げにより広域的に地盤沈下が生じたため、地盤高が満潮位よりも低いゼロメートル地帯と呼ばれる地域がある。首都圏では臨海地域全体への高潮の侵入を防ぐために防潮施設が設置されている。現在、首都直下地震の発生が懸念されており、対策がとられているが、地震による揺れや液状化によって、防潮施設が被災し、機能不全を起こす可能性が全くないわけではない。そのため、首都直下地震による東京都東部低地を対象とした広域的かつ高精度な被害予測が必要である。本研究では、東京東部低地の地震応答・液状化シミュレーションを行い、防潮施設や治水施設に与える被害の程度を評価する。
|
Outline of Final Research Achievements |
In this study, a method was developed to create a three-dimensional ground model using the results of borehole investigations and other data. A machine learning method was developed to estimate the over consolidation ratio, a parameter that represents the stress history experienced by the ground, among the material constants of the ground. Observed earthquake records and simulation results were used to train the neural network. An analysis code for seismic response analysis was developed to enable parallel computation on a GPU. Readability was emphasized so that the analysis code can be easily maintained and extended. A ground model of the 23 wards of Tokyo was created and earthquake response analysis was performed to evaluate liquefaction risk.
|
Academic Significance and Societal Importance of the Research Achievements |
研究成果の学術的意義や社会的意義(200字程度,最大300文字,改行2回まで) 広域の三次元地盤モデルをボーリングデータ等から,ほぼ自動的に構築する技術開発を行った.学術的意義としては,簡易的な地盤調査のみでは困難な過圧密比の推定を機械学習により可能であることを示した.土粒子と間隙水の相互作用を考慮した物理モデルに基づくシミュレーションに使用することを前提とした数値モデルであり,これにより液状化リスク評価を広域にシミュレーションベースで行えることが社会的意義である.
|
Report
(4 results)
Research Products
(16 results)