Project/Area Number |
20K04757
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 22060:Environmental systems for civil engineering-related
|
Research Institution | Kochi University of Technology |
Principal Investigator |
Akatsuka Shin 高知工科大学, システム工学群, 准教授 (80548743)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2022: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | 相対湿度 / 可降水量 / 数値予報データ / MSM-GPV / MSM / 湿度 / 水蒸気 |
Outline of Research at the Start |
本研究は,地上観測だけでなく,地上観測以外のデータも利用した湿度環境指標の時間的・空間的に詳細な分布を把握する手法を開発し,得られた湿度環境指標の時空間分布評価を行うことにより,汎用性の高い湿度環境指標データの整備を目指す. 様々な時間・空間分解能を持つデータ(アメダス,GNSS,人工衛星データ,数値予報データ等)から,1時間ごとの湿度環境指標を推定し,その分布図を作成する.さらに,それらの分布図を融合し,各月・各時刻の湿度環境指標の平年値分布図を作成することで,汎用性の高い湿度環境指標データを整備する.
|
Outline of Final Research Achievements |
A relative humidity estimation model was constructed by machine learning method, using the amount of precipitable water, meteorological observation data and landuse ratio at AMeDAS stations as input data. As a result, the hourly relative humidity was estimated with higher accuracy than the accuracy of the relative humidity forecast value from the numerical prediction. A method was also developed to produce a precipitable water distribution map with a spatial resolution of 1 km and a temporal resolution of 1 hour using numerical prediction data with a spatial resolution of 5 km and a temporal resolution of 3 hours. A method for estimating relative humidity using a precipitable water distribution map was investigated, and it was shown that the 90 m resolution relative humidity distribution for the whole of Shikoku could be estimated with the same accuracy as the 5 km resolution numerical prediction data by using the accumulated water vapour from the ground to the 900 hPa pressure level.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では,高時空間分解能の可降水量分布図作成手法を開発し,可降水量分布から相対湿度分布を推定できる可能性を示した.高時空間分解能の可降水量分布図から相対湿度分布を高精度で推定できるようになれば,熱中症リスクの評価,圃場における遅霜や病虫害などの発生予察,コンクリート構造物の劣化予測などへの活用が期待できる.また,高時空間分解能の可降水量分布図からこれまでの可降水量の分布傾向を把握することができ,豪雨発生の事前予測への貢献も期待できる.
|