Project/Area Number |
20K05076
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 26020:Inorganic materials and properties-related
|
Research Institution | Nagoya Institute of Technology |
Principal Investigator |
Iwamoto Yuji 名古屋工業大学, 工学(系)研究科(研究院), 教授 (40399598)
|
Co-Investigator(Kenkyū-buntansha) |
本多 沢雄 名古屋工業大学, 工学(系)研究科(研究院), 助教 (50301221)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 水素 / 水素貯蔵 / アモルファス / ポリマープレカーサー / ナノコンポジット / 窒化物 |
Outline of Research at the Start |
ポリマープレカーサー法で合成したアモルファスSiAlCNが特異な水素吸脱着機能を有することを見出した。本研究では、この材料の(Ⅰ)水素吸脱機能を担う活性点と機能発現メカニズムの解析、(Ⅱ)材料化学組成・多孔質構造と水素吸蔵・放出機能発現の相関関係の解析と、水素・吸脱着量の定量的な評価解析、および(Ⅲ)メタネーション反応を対象に触媒反応場としての応用研究を実施する。
|
Outline of Final Research Achievements |
Novel amorphous silicon aluminum nitride (SiAlN), alkali metal cation-doped amorphous silicon boron nitride (Na-SiBN) compounds were synthesized through the Polymer-Derived Ceramics (PDCs) route. The active H2-adsorption site in the SiAlN was suggested as a pseudo-3-fold coordinated Al-N component, while the frustrated Lewis acid-base component: =B-N-Na+ was suggested for the Na-SiBN compounds. Further synthesis study of polymer-derived amorphous silicon nitride (a-SiN)-compounds led to the following findings: Low-temperature formation of Ni nanocrystallites embedded within a-SiN matrix (Ni/a-SiN) which exhibited lower activation energy for H2-desorption compared with conventional Ni/a-SiO2, and formation of anti-perovskite Ni3InN nanocrystallites embedded within a-SiN matrix which showed unique CO2-adsorption-desorption properties. These results revealed their potential application as a catalyst for the hydrogenation of small molecules such as CO2.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は、従来報告例の無い典型元素のみで構成されたアモルファス窒化ケイ素系材料を対象に、化学的手法に基づく無機材料の設計と合成により、酸・塩基双方の性質を打ち消し合うことが無く、両者の協同による触媒機能発現が期待されるフラストレイティドルイスペア(FLP)を材料の部分構造に導入することで、水素吸脱着機能発現に成功した。また、この合成研究を通じて、100℃以上で水素やCO2の吸着機能を有する新規なアモルファス窒化ケイ素系ナノ複合材料を見出した。これらの成果は、喫緊の課題であるカーボンニュートラル社会の構築に有効な新規水素化反応触媒等としての応用が期待されることから、その社会的意義も高い。
|