Project/Area Number |
20K05206
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 27020:Chemical reaction and process system engineering-related
|
Research Institution | Utsunomiya University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
伊藤 直次 宇都宮大学, 工学部, 教授 (90356478)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | 水電解 / 水素 / 水素透過膜 / パラジウム膜 / 水素化 / 水素分離膜 |
Outline of Research at the Start |
水電解由来の水素原子を利用する水素化反応プロセスは、水素エネルギー社会における水素キャリア合成技術として重要である。本研究では、水素透過能を有するパラジウム膜電極と水素化触媒を用いて、水電解・パラジウム膜での水素分離・触媒水素化反応を同時に行うプロセスの高効率化を行う。従来のセルを改良した新規セルによる水素化を行い、膜の水素透過速度と水素化反応速度の温度依存性、電解側圧力上昇時の気泡減少による水電解水素発生速度増大等を明らかとすることで、水素化反応の効率化に関わる因子を把握する。
|
Outline of Final Research Achievements |
An electrolysis cell with a larger membrane surface area and shorter electrode distance using a palladium-silver membrane as a cathode electrode was developed. Water electrolysis with a potassium hydroxide aqueous solution revealed that hydrogen production by electrolysis on the membrane and purification of hydrogen by hydrogen permeation through the membrane. By improving the internal structure of the cell such as the method of supplying current to the membrane, a water electrolysis device that operates at lower voltage and higher current compared to the previous cell was constructed. Furthermore, the hydrogenation of toluene to methylcyclohexane via water electrolysis was performed by placing supported metal catalysts inside the device.
|
Academic Significance and Societal Importance of the Research Achievements |
水電解による水素製造および水素化は、再生可能エネルギー由来の電力を資源量が豊富な水を利用し、貯蔵や輸送が可能な水素やケミカルハイドライドに変換する水素エネルギー関連にて重要なプロセスである。本研究は金属水素透過膜を電極として利用することを確かにすることにより水素製造、水素精製、水素化を同一装置で一度に行うことを意図しており、狭小地での水素製造や水素化によるケミカルハイドライド合成を可能とすることで、分散型社会に適合したエネルギー供給システムの発展に寄与するものである。
|