Development of atmospheric carbon dioxide fixation process using biomethane direct reforming
Project/Area Number |
20K05218
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 27030:Catalyst and resource chemical process-related
|
Research Institution | Kitami Institute of Technology |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | メタン直接改質 / バイオメタン / 二酸化炭素共存 / 水素製造 / ナノカーボン製造 / 二酸化炭素固定化 / 酸化鉄 / 酸化ニッケル / ナノカーボン / ナノカーボン直径 / ニッケル / アルミナ / ターコイズ水素 / 二酸化炭素削減 / クリーン水素 |
Outline of Research at the Start |
現在,大気中の二酸化炭素低減には大規模発生源を対象とする濃縮・貯留,還元資源化等が主流であるが,大気中の希薄なCO2を固定化する技術開発は進んでいない.一方,バイオマスを燃焼した場合はカーボンニュートラルが成り立つ.それゆえバイオメタンを利用したメタン直接改質は,CO2を排出せずに水素製造が可能であるため,大気中の希薄なCO2を固定化する事が出来る先進的な技術と言える.本研究では,バイオメタン中の不純物に耐性のあるメタン直接改質触媒・反応器,水素の分離法,反応後にメタン分解炭素中に分散した触媒の処理・利用法等を新たに開発し,研究期間内に実証プラント用の基礎技術を確立する.
|
Outline of Final Research Achievements |
The direct methane reforming reaction did not show any activity in the presence of carbon dioxide. However, the presence of carbon dioxide in biomethane at a certain ratio is disadvantageous for the direct methane reforming reaction. As a result of devising the activation of the catalyst, it became possible for the iron-based catalyst to exhibit activity up to a carbon dioxide concentration of 10%. This means that it is possible to use gas from which carbon dioxide has been separated by membrane separation or the like. On the other hand, the nickel-based catalyst was active up to 40% carbon dioxide concentration, which means that biomethane can be used directly. In addition, it was found that carbon dioxide can be fixed by methanating carbon dioxide with hydrogen using the same catalyst and then performing a continuous direct methane reforming reaction.
|
Academic Significance and Societal Importance of the Research Achievements |
現在,大気中の二酸化炭素(CO2)低減には大規模発生源を対象とする濃縮・貯留,還元資源化等が主流であるが,大気中の希薄なCO2の固定化は難しい.一方,バイオマスを燃焼した場合はカーボンニュートラルが成り立つ.それゆえバイオメタンを利用したメタン直接改質(DMR)は,CO2を排出せずに水素製造できるため,大気中の希薄なCO2を固定化する事が出来る先進的な技術と言える.本成果は,触媒の活性化を工夫することにより,CO2共存下でもDMR活性を示すこと,更にはバイオメタンを直接DMRに使用できる事を見出した.そして高濃度のCO2は一度メタン化した後,連続してDMRにて固定化できることを実証した.
|
Report
(4 results)
Research Products
(13 results)