Inorganic-bio hybrid photocatalytic hydrogen production using a combination of microbial metal sulfide precipitation and hydrogenase reaction
Project/Area Number |
20K05230
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 27040:Biofunction and bioprocess engineering-related
|
Research Institution | Nara Women's University |
Principal Investigator |
Honda Yuki 奈良女子大学, 自然科学系, 准教授 (90583849)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | 水素生産 / 無機ー生体ハイブリッド / 光触媒 / ヒドロゲナーゼ / 硫化カドミウム / 人工光合成 / 無機―生体ハイブリッド |
Outline of Research at the Start |
水素は次世代のエネルギーキャリアとして注目され、その需要は今後ますます高まると予想される。一方、工業的な水素の生産は化石燃料の使用に依存しており、自然エネルギーとくに太陽光などの光エネルギーを用いたクリーンな水素生産法への転換に期待が寄せられている。本研究では、無機光触媒による光エネルギー変換と、生体触媒による高活性な水素生成を組み合わせた「無機―生体ハイブリッド型光触媒系」を構築し、新規な光バイオ水素生産系を提案することを目指す。
|
Outline of Final Research Achievements |
Hydrogen is regarded as a clean energy carrier. However, most industrial hydrogen production depends on the fossil fuel consumption. Therefore, an alternative system utilizing renewable solar energy is required for clean hydrogen production. An inorganic-biological hybrid system, which integrates both features of semiconductor photocatalysts and enzymes, is attractive for the conversion of solar energy to hydrogen. In this study, the new inorganic-biological hybrid system was constructed by combining the bacterial self-precipitation of CdS, which is a visible light responsive semiconductor, and the genetic modification for highly active hydrogen production in Escherichia coli. The new system achieved photocatalytic hydrogen production, demonstrating the feasibility of the biohybrid approaches and expanding the knowledge of photosensitization using a bacterial whole cell with a self-precipitated semiconductor.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究により、大腸菌で形成された金属硫化物半導体(硫化カドミウム、CdS)による光エネルギー変換と、遺伝子工学的に付与した水素生成能の共役させた無機-生体ハイブリッド系による光駆動型水素生産系の構築を達成した。無機-生体ハイブリッド系は、安価で高安定な無機材料による光化学エネルギー変換と、高選択的かつ高活性な酵素による物質生産の両方の特長を組み合わせた新しいアプローチに属する反応系である。ハイブリッド系の設計指針やその高効率化についての学術的な知見を深めるとともに、持続可能な開発の実現という社会的要請に応える反応システムの構築に向けた成果を得られたと考えている。
|
Report
(4 results)
Research Products
(2 results)