Project/Area Number |
20K05344
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 29030:Applied condensed matter physics-related
|
Research Institution | Kagoshima University |
Principal Investigator |
Horie Yuji 鹿児島大学, 理工学域工学系, 教授 (50201760)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | ナノファイバ / セラミックス / 光蓄電池 / イオン伝導 / 電界紡糸法 / 固体電解質 / 不織布 |
Outline of Research at the Start |
IoTや5G情報ネットワークの発展などのために,超小型でメンテナンスフリーな自発発電型独立電源のニーズが今後高まることが考えられる.従来の単一デバイスで光充電可能な「光蓄電池」はそのような用途には最適であるが,電解液を必要とするため固体電解質による全固体化が必須である.そこで本研究では電界紡糸法によって得られた直径数百ナノメートルの透明導電体と蓄電材の同軸ナノファイバからなる不織布状シートを固体電解質で満たし,イオン伝導度の低さを克服し,低い光起電力での蓄電効率を上げることで,最終的にはオール・セラミックスのナノファイバデバイスによって安定性に優れた新しい高速光蓄電デバイスの実現を目指した.
|
Outline of Final Research Achievements |
In order to achieve all-solid-state "photorechargeable battery" in which photo-charge is realized in a single-device, the electrolyte was replaced with a solid electrolyte, and a nanofiber (NF) electrode structure was employed to overcome low ionic conductivity and increase storage efficiency at low photovoltaic emf. Co-axial NFs of conductor/storage material and storage material/solid electrolyte with a diameter of several hundred nanometers were prepared by electrospinning, and the space between NFs in a nonwoven fabric was filled with solid electrolyte. The ionic conductivity at the storage material/solid electrolyte interface and storage capacity were improved by the NF structure. However, the nanoscale roughness on the NF surface could not be completely filled with solid electrolyte, and the advantage of NF-structure could not be fully utilized, which remained as an issue.
|
Academic Significance and Societal Importance of the Research Achievements |
IoTや5G情報ネットワークとそれらを利用したAI技術の発展などのために、超小型でメンテナンスフリーな自発発電型独立電源のニーズが今後ますます高まることが考えられる。本研究では、単一デバイスで光充電可能な「光蓄電池」の全固体化の実現のために、直径数百ナノメートルの同軸ナノファイバ(NF)のネットワークを固体電解質で満たすデバイス構造を採用し、固体電解質界面での反応場を広げイオン挿入深さを浅くすることで、固体電解質のイオン伝導度の低さを克服することができることを示した。また、NF構造の問題点も明らかにし、目標とする新しいNF高速光蓄電デバイスの実現への道筋を明らかにすることができた。
|