Three-dimensional distribution control of nitrogen atoms in dilute nitride films using atomic layer epitaxy
Project/Area Number |
20K05346
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 30010:Crystal engineering-related
|
Research Institution | University of Miyazaki |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 希薄窒化物半導体 / 原子層エピタキシー / 太陽電池 / 超格子 / 結晶成長 / 半導体物性 |
Outline of Research at the Start |
希薄窒化物半導体は、多接合太陽電池や光電子集積回路に期待されている。しかし、窒素(N)原子導入による電気特性の劣化が問題となっている。その原因として膜中のN分布の不均一性が考えられているが、直接N分布を観察することが困難である。本研究では、希薄窒化物半導体であるGaAsN膜中において、(i)N原子の空間分布を三次元で制御したGaAsN薄膜の作製、(ii)実際のN分布の評価、(iii)N原子の空間分布がN局在準位および電気特性に与える影響の解明、の3点の解明し、GaAsNも含めた希薄窒化物半導体材料全ての高品質化の指針を得る。
|
Outline of Final Research Achievements |
In this study, we fabricated GaAsN thin films in which the spatial distribution of N atoms was three-dimensionally controlled. The N distribution in the GaAsN films was confirmed. For three-dimensional control, the atomic layer epitaxy (ALE) method, which can control the growth of each atomic layer, was used to control the nitrogen distribution in the growth direction, and the in-plane nitrogen distribution was controlled by surface steps using vicinal GaAs substrates. By GaAsN growth on substrates with systematically changed step densities, we have quantitatively clarified the amount of N atoms incorporated near the steps and on the terraces of the surface. Using the above result, we have successfully grown GaAsN super lattice with controlling N distribution in three-dimensional.
|
Academic Significance and Societal Importance of the Research Achievements |
GaAsN等の希薄窒化物半導体は、Nを導入することでGeやSiに格子整合可能でバンドギャップエネルギーを1~2 eVに制御可能であることから、多接合型太陽電池等への応用が期待されている。しかし、N導入による電気特性の悪化が問題である。特性悪化の原因としてN分布の不均一が指摘されているが、実際のN分布の観察は難しい。 そこで本研究では、意図的にN分布を制御したGaAsN薄膜を作製を試み、成長方向と成長面内でN分布を意図的に制御したGaAsN薄膜の作製手法を確立した。今後本手法により作製したGaAsN薄膜の電気特性評価により、N分布の影響が明らかになることが期待される。
|
Report
(4 results)
Research Products
(3 results)