Project/Area Number |
20K05417
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 32010:Fundamental physical chemistry-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | 分子自己集合 / 化学反応ネットワーク / 反応速度論 / 化学マスター方程式 / 分子自己集合過程 / 化学反応速度論 |
Outline of Research at the Start |
多数の素反応の複雑な連鎖の末に最終生成物が得られる分子自己集合過程を,化学反応速度と反応ネットワークに着目して解析する.分光学的手法によってモニターされるよりもずっと短い時間スケールを持つ,自己集合反応の詳細を,申請者らが開発した数値手法により明らかにする.分子の自己集合過程において,短寿命の中間体が目まぐるしく生成し,次の反応を導く過程の解明や,実験的に観察することが困難な中間体の同定を行い,反応の予測や制御に関する指針を確立する.さらに,化学反応ネットワークを起点として,個別の反応にとらわれない,自己集合過程の根底にある共通の原則を明らかにする.
|
Outline of Final Research Achievements |
In this research project, based on our developed numerical analysis method, NASAP (numerical analysis of self-assembly process), we performed numerical analyses for some coordination self-assembly systems including M6L3 prism complexes and an M6L4 square-based pyramid complex (M and L stand for the metal ion and the organic multitopic ligand, respectively) and elucidated the detailed reaction processes with main reaction pathways, rate-determining steps, and kinetic traps. It is also revealed from the numerical simulations on the model reaction networks and a more complex self-assembly network that quasi-irreversibility occurs in chemical reaction networks consisting only of reversible elementary reactions as in molecular self-assembly reactions, and that quasi-irreversibility is the key concept for understanding the selection of reaction pathways leading to objective products and kinetic traps.
|
Academic Significance and Societal Importance of the Research Achievements |
構成要素が自発的に特定の構造を構築する分子自己集合の途上で、系がどの経路を優先的に選んで化学反応が進行するのか、実験だけでは明らかにできない詳細を得るために、数値シミュレーションを用いた解析が有用であることを証明した。また、可逆な反応ネットワーク上の自己集合反応ではどのようにして、或いはなぜ目的生成物や速度論トラップに至るのかという、これまで知見や議論が少なく曖昧に捉えられていた問題に対して、可逆性からの準不可逆性の発現の過程を明らかにし、準不可逆性が反応経路選択における重要な概念であることを明らかにしたことは、広く自己集合を支配する根本原理を突き止めるための一歩であると考えられる。
|