Development of Quantum Dot LED with plasmonic metal nanostructures
Project/Area Number |
20K05441
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 32020:Functional solid state chemistry-related
|
Research Institution | Kitami Institute of Technology |
Principal Investigator |
Kiba Takayuki 北見工業大学, 工学部, 准教授 (40567236)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | プラズモン / 発光増幅 / 有機EL / 量子ドット / 局在表面プラズモン / 金属ナノ構造 / ナノスフィアリソグラフィ / ナノ共振器 / マイクロキャビティ / OLED / 発光デバイス |
Outline of Research at the Start |
量子ドットLEDは、ディスプレイ用途として需要の拡大が見込まれ、さらなる高効率化の要請がある。本研究の目的は、金属ナノ構造の局在表面プラズモンと発光材料間におけるエネルギーフローの解明と、発光増幅機構の理解の元でのデバイス設計によるQLEDの発光効率改善である。そのために、金属ナノ構造を組み込んだQLED素子を試作し、電流注入を阻害せずに発光増幅効果が維持・発現する構造最適化を行う。また、時間分解PLおよびEL測定により、金属ナノ構造/QLED中において発光増幅に関与する各過程をリアルタイム計測し、その機構を明らかにすることで、金属ナノ構造のLSPによる発光増幅効果の有用性・汎用性を実証する。
|
Outline of Final Research Achievements |
The purpose of this study is to improve emission efficiency by utilizing the emission enhancement effect of localized surface plasmon (LSP) of metallic nanostructures incorporated in light-emitting devices. For this purpose, we have investigated metal nanostructures suitable for emission materials with low quantum efficiency, confirmed the luminescence amplification effect by time-resolved PL measurements, and fabricated metal nanostructures in the devices. We fabricated nanostructures by annealing thin metal films and metal nanomesh structures by nanosphere lithography, and confirmed that the LSP resonance wavelengths can be controlled within the visible range and the ability to enhance emission in combination with light-emitting materials. The effectiveness of surface plasmons generated in metal/dielectric multilayered thin films as well as nanostructures was also confirmed.
|
Academic Significance and Societal Importance of the Research Achievements |
金属ナノ構造の作製・評価や発光材料との組み合わせによる発光増幅現象の観測・機構解明、および金属/誘電体複合薄膜の発光デバイスへの応用を進めた。それに加え電磁界シミュレーションによる解析から、金属ナノ構造や複合薄膜の中に生じるプラズモンモードとの対応関係を明らかにした上で、発光増幅の機構についての理解が進んだ。得られた知見を基に、発光デバイス、特に電極構造のデザインを最適化することが可能となる。これにより近年需要が大きく広がっているディスプレイ用途の有機EL素子等の省電力化を図ることができる。
|
Report
(4 results)
Research Products
(32 results)