Project/Area Number |
20K05617
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 35020:Polymer materials-related
|
Research Institution | Shinshu University |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | リチウムイオン二次電池 / フッ化鉄 / グラフェン / 高エネルギー密度電池 / リチウムイオン電池 / カーボン材料 / ナノカーボン / 繊維 |
Outline of Research at the Start |
フッ化鉄系材料(FeOxFy)をグラフェンナノ空間に生成させ、高容量で高速充放電可能な次世代のリチウムイオン二次電池(LIB)を創製する。これを実現するため、繊維材料の炭素化過程を制御し、湾曲したグラフェンからなるグラフェン繊維を創製する。次いで、グラフェンの湾曲により導入されたナノ空間の擬高圧効果と空間制約性により、ナノサイズのFeOxFyを生成させる。生成したグラフェン- FeOxFy複合体繊維について、グラフェン由来の高電気伝導性、FeOxFyの高容量、および一次元繊維構造化による高速イオン拡散の効果により、現行のLIBの3倍以上の容量と高速充放電可能な革新電池を創製する。
|
Outline of Final Research Achievements |
We have developed the strategies to prepare the graphene-iron fluoride composite fibers for advanced lithium ion battery (LIB) and have demonstrated the application in LIB using the composite fibers. The iron dispersed carbon fibers were fluorinated at 573 K using fluorine gas, and their structural properties were investigated by scanning and transmission electron microscopic methods (SEM and TEM), X-ray diffraction (XRD), and so on. The SEM images indicated the formation of the fibrous structures. The average fiber length and thickness were 52μm and 10μm, respectively. The TEM images showed that the fibers have the nanoparticles with an average diameter of 40 nm, and the XRD results identified the particles as iron trifluoride (FeF3). The TEM images also showed that the FeF3 particles are covered with graphene-like and amorphous carbon matrices. The FeF3-dispersed composite fibers were applied in lithium ion battery and found to exhibit the interest electrochemical performance.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、グラフェン状物質から構成された制約空間中における化学反応、および天然繊維の微細構造を利用した物質調製に成功した。これらの成果は、新奇な物質合成手法を実現した点において、学術的な価値があるといえる。また、研究対象としたフッ化鉄は次世代電池の電極として期待されている材料の一つである。それをグラフェン状物質で被覆し、さらに複合体繊維することに成功した。この複合体繊維が、リチウムイオンを可逆的に充放電することが確認できたことから、次世代革新電池の研究開発にも貢献するという社会的意義もある研究成果となった。
|