Project/Area Number |
20K05683
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 36020:Energy-related chemistry
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
Kota Suzuki 東京工業大学, 科学技術創成研究院, 准教授 (40708492)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | リチウム硫黄電池 / 全固体電池 / 固体電解質 / 正極複合体 |
Outline of Research at the Start |
固体電解質材料合成の多様化により,液相法を用いた硫黄正極複合体の作製条件の最適化を高速で行い,高性能な全固体リチウム硫黄電池を実現する. (i)固体電解質材料合成の多様化による,電解質供給量の増大: Li10GeP2S12系物質群を大量に供給するための基盤技術を確立する. (ii)様々な複合体作製条件のスクリーニング: 液相法により硫黄/CRと固体電解質を複合化し,細孔内のイオン導電パスを構築し,項目(iii)による評価へと展開する. (iii) 電池性能評価とフィードバックによる高性能化: 様々な全固体リチウム硫黄電池を作製し,高性能な正極複合体作製条件を見いだす.
|
Outline of Final Research Achievements |
The mass synthesis of Li10MP2S12 (M=Si, Ge, Sn, P) solid electrolytes was investigated, and conditions were established to obtain high-quality Li10GeP2S12 crystalline phases of about 5 g in a single synthesis by a thermal treatment process under argon gas flow. It was also verified that the dissolution and deposition process of Li10GeP2S12 material. As a result, it was found that several issues need to be solved to make the requirements compatible with existing battery fabrication processes. The construction of a high energy density cathode with increased sulfur content in a cathode composite consisting of sulfur-carbon-solid electrolyte was demonstrated. The effects of carbon and solid electrolyte particle sizes used in the composite and various additives on battery performance were also examined. Optimization of the variable parameters improved the utilization of sulfur-active material and enhanced the cycle characteristics.
|
Academic Significance and Societal Importance of the Research Achievements |
硫化物系固体電解質の課題となっている,大量合成や液相プロセスへの展開について,基礎的な技術を確立し,その課題も明らかにした.さらに,その先の応用となる全固体型リチウム硫黄電池へと展開し,高エネルギー密度型電池の実現に向けた基礎研究も進めた.複合体作成における様々な制御パラメータが電池性能に与える影響を確認し,今後の開発の方向性を示した.電気自動車用途として最も期待されている硫化物系の固体電解質において,生産技術や品質管理における重要な知見を与えており,社会的意義も大きい.
|