Estimation of water stress of plant by deep learning of leaf images
Project/Area Number |
20K06328
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 41040:Agricultural environmental engineering and agricultural information engineering-related
|
Research Institution | Toin University of Yokohama |
Principal Investigator |
Sano Motoaki 桐蔭横浜大学, 医用工学部, 教授 (90206003)
|
Co-Investigator(Kenkyū-buntansha) |
杉本 恒美 桐蔭横浜大学, 工学研究科, 教授 (80257427)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 植物の水ストレス / 葉の固有振動数 / Webカメラ / 深層学習 / 最適灌水制御 / Webカメラ映像 / 植物工場 |
Outline of Research at the Start |
葉柄のたわみによる葉身の変位振動の固有振動数は日周変化を示すことが分かってきており、その変化が、植物の水ストレスの状態によって変化するため、それを利用した非侵襲的な植物の水ストレス推定が提案されている。しかし、相関追尾法による葉の固有振動数の自動計測は困難であるため、本研究では、フレーム画像をブロックに分割し、ブロック内の平均画素値の変動から葉の振動を計測する方法を提案してきた。しかし、どのブロックが葉の固有振動数を反映するのかは人間が判定していたため、その判定に、近年注目されている深層学習の適用を試みる。また、Webカメラの映像から、直接、植物の水ストレスが学習できないかについても検討する。
|
Outline of Final Research Achievements |
As a method for estimating water stress in plants, we have focused on the natural frequency of a leaf, and have shown that the diurnal behavior of the natural frequency of a leaf changes when the plant is subjected to water stress. We have also devised a rectangular region segmentation method for measuring the leaf frequency that does not require a region of interest for correlation tracking, and attempted to automate the measurement of natural frequency by using a convolutional neural network (CNN) to select a desired rectangular region. As a result, we were able to determine the rectangular regions with almost 90% accuracy, and when we applied the CNN to draw a graph of the diurnal variation of the natural frequency of a leaf automatically, the results were almost the same as those produced by human judgment, although there were some outliers.
|
Academic Significance and Societal Importance of the Research Achievements |
葉の固有振動数の日周変動がどのような機序で起きているのか、またその振る舞いは植物の種類によってどのように異なるのかなど、まだまだ調べなければならないことは数多く存在するが、何れにしても、植物の水ストレスが、葉の固有振動数の日周変化により推定できるということは学術的にも興味深い。 また、今回の研究をもとに、葉の固有振動数が自動的に計測できるようになり、それにより植物の水ストレスの状態が実時間かつ非侵襲的に推定できるようになれば、植物の最適灌水制御システムに向けての大きな前進となり、土耕栽培の植物工場などへの応用が期待される。
|
Report
(4 results)
Research Products
(3 results)