• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

development of automatic diagnostic system of electromyographic discharges by audio information and artificial intelligence

Research Project

Project/Area Number 20K07877
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 52020:Neurology-related
Research InstitutionTenri University (2023)
Tenri Health Care University (2021-2022)
Kanazawa Medical University (2020)

Principal Investigator

NODERA HIROYUKI  天理大学, 医療学部, 研究員 (40363147)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Keywords針筋電図 / 人工知能 / 音特徴量 / 機械学習 / AI / 自動判別
Outline of Research at the Start

針筋電図検査で遭遇する多彩な放電パターンを判別するためには、特徴的な音パターンの認識が重要である。しかし音特徴の定量的解析研究は殆ど行われていないため、判別の根拠が不明確である。また、筋電図専門医が大幅に不足している現状では、人工知能手法を応用した判別支援システムは社会的なインパクトが大きい。本研究では針筋電図放電パターンの包括的な自動判別アルゴリズムを構築することを目的とし、音情報を用いて針筋電図放電を正確に判別する人工知能システムを作成する。

Outline of Final Research Achievements

Testing potentials of needle electromyography (needle EMG) obtained from patients with neuromuscular diseases were databased. The classified waveforms were divided into 2 second audio files. Method 1) Audio characteristics were obtained from each audio file. Machine learning methods was used to classify the six resting potentials. The accuracy was 90.4%. Method 2)The same database as the method 1 was used. The audio information was transformed into melspectrogram as image files. The images were divided into training and test data. The training data were then trained with convolutional neural networks (CNNs). Image augmentation was useful in that the accuracy was 100%.

Academic Significance and Societal Importance of the Research Achievements

針筋電図の放電判別は専門医以外には容易ではなく、正確な診断を妨げている。本研究により機械学習やディープラーニングを用いることで高精度に判別が可能であることが分かった。今後は実用化に向けて対象となる波形を増やしていく。また,教師データの不足が精度上昇のボトルネックになることが指摘されており,生成データをトレーニングデータへ流用できるか検討する必要がある。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (4 results)

All 2023 2021

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (2 results)

  • [Journal Article] LSTM Neural Network for Inferring Conduction Velocity Distribution in Demyelinating Neuropathies2021

    • Author(s)
      Nodera Hiroyuki、Matsui Makoto
    • Journal Title

      Frontiers in Neurology

      Volume: 12 Pages: 0-0

    • DOI

      10.3389/fneur.2021.699339

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Peripheral nerve dysfunction in a patient with thyrotoxic periodic paralysis: Evidence from an axonal prolonged exercise test2021

    • Author(s)
      Osaki Yusuke、Nodera Hiroyuki、Fukumoto Tatsuya、Kaji Ryuji、Izumi Yuishin
    • Journal Title

      Clinical Neurophysiology

      Volume: 132 Issue: 7 Pages: 1496-1498

    • DOI

      10.1016/j.clinph.2021.04.006

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Presentation] Data augmentation improves machine learning - based identification of needle EMG resting discharges2023

    • Author(s)
      野寺裕之
    • Organizer
      第64回日本神経学会学術大会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Deep learning approach to infer conduction velocity distribution in demyelinating neuropathies2021

    • Author(s)
      野寺裕之
    • Organizer
      日本神経学会
    • Related Report
      2021 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi