• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Establishment of the new analytical method for the grade of breast cancer that combined MRI and deep learning: development to custom-made therapy

Research Project

Project/Area Number 20K08017
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionKanazawa University

Principal Investigator

Kawashima Hiroko  金沢大学, 保健学系, 教授 (70293355)

Co-Investigator(Kenkyū-buntansha) 宮地 利明  金沢大学, 保健学系, 教授 (80324086)
Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥130,000 (Direct Cost: ¥100,000、Indirect Cost: ¥30,000)
KeywordsMRI / 深層学習 / 乳癌 / 悪性度 / MRI
Outline of Research at the Start

本研究の目的は,乳癌患者の術前検査として定着しているMRIより得られる情報をディープラーニングを用いて解析・選別し,オーダーメイド治療に直結する乳癌悪性度層別化プログラムを確立することである.計画している研究内容は,MRIから得た膨大な情報の中から,病理学的悪性度指標と関連の深い造影MRI係数および拡散MRI係数を抽出する.次に抽出された項目を教師データとして学習させたプログラムの,悪性度類推能力を検証する.さらにMRI情報以外の臨床・病理データを加味して悪性度類推能力を検証する.最終的には,画像情報を中心とした総合的乳癌悪性度解析ディープラーニングプログラムの開発に結びつける.

Outline of Final Research Achievements

This study analyzed enormous information to be obtained from MRI using deep learning and was intended to establish the new analytical method for the grade of breast cancer to be connected directly with custom-made therapy. We targeted a prediction of the pathological complete response of preoperative chemotherapy. We investigated it if we put clinical data, contrast-enhanced MRI data, characteristic quantity in the first-order from MRI, characteristic quantity in the second-order from MRI together how whether it was highest-precision. As a result, for the prediction of the pathological complete response, the thing that became highest-precision was found when we utilized all information of clinical data, MRI data, the characteristic quantity in the first-order from MRI, and the characteristic quantity in the second-order from MRI.

Academic Significance and Societal Importance of the Research Achievements

乳癌はそのサブタイプによって大筋の治療方針が決定されるが,1つのサブタイプの中でも生物学的悪性度には幅がある.MRIは乳癌患者の術前検査として広く定着しているが,乳癌の悪性度をMRIの数少ないパラメータで正確に予測することは難しい.今回,ディープラーニングでMRI情報を解析し,乳癌の悪性度を予測することを試みた.その結果,術前化学療法の病理学的完全奏功を治療開始前に予測するためには,臨床データ,基本的なMRIデータに加え,造影MRIデータから抽出した第一段階の特徴量および第二段階の特徴量のすべての情報を活用した場合に最も精度が高くなることがわかり,ディープラーニングの可能性が示された.

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (5 results)

All 2022 2021 2020

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 2 results) Presentation (2 results)

  • [Journal Article] Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using radiomics of pretreatment dynamic contrast-enhanced MRI2022

    • Author(s)
      Yoshida K, Kawashima H, Kannon T, Tajima A, Ohno N, Terada K, Takamatsu A, Adachi H, Ohno M, Miyati T, Ishikawa S, Ikeda H, Gabata T
    • Journal Title

      Magnetic Resonance Imaging

      Volume: 92 Pages: 19-25

    • DOI

      10.1016/j.mri.2022.05.018

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Predicting axillary lymph node metastasis in breast cancer using the similarity of quantitative dual-energy CT parameters between the primary lesion and axillary lymph node2022

    • Author(s)
      Terada K, Kawashima H, Yoneda N, Toshima F, Hirata M, Kobayashi S, Gabata T
    • Journal Title

      Jpn J Radiol

      Volume: 40 Issue: 12 Pages: 1271-1281

    • DOI

      10.1007/s11604-022-01316-8

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Triexponential Diffusion Analysis of Diffusion-weighted Imaging for Breast Ductal Carcinoma <i>in Situ</i> and Invasive Ductal Carcinoma2021

    • Author(s)
      Ohno Masako、Ohno Naoki、Miyati Tosiaki、Kawashima Hiroko、Kozaka Kazuto、Matsuura Yukihiro、Gabata Toshifumi、Kobayashi Satoshi
    • Journal Title

      Magnetic Resonance in Medical Sciences

      Volume: 20 Issue: 4 Pages: 396-403

    • DOI

      10.2463/mrms.mp.2020-0103

    • NAID

      130008123646

    • ISSN
      1347-3182, 1880-2206
    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Presentation] Dual-Energy CT Evaluation of Axial Lymph Node Metastasis in Patients with Breast Cancer using Quantitative Parameters2021

    • Author(s)
      Terada K, Kawashima H, Yoneda N, Toshima F, Gabata T
    • Organizer
      第80回日本医学放射線学会総会
    • Related Report
      2021 Research-status Report
  • [Presentation] The Radiomics Features of Dynamic Contrast Enhanced MRI, Relationship of Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Patients2020

    • Author(s)
      Terada K, Kawashima H, Yoshida K, Ohno N, Ohno M, Adachi H
    • Organizer
      第79回日本医学放射線学会総会
    • Related Report
      2020 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi