Project/Area Number |
20K08060
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 52040:Radiological sciences-related
|
Research Institution | Fujita Health University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
塚本 徹哉 藤田医科大学, 医学部, 教授 (00236861)
今泉 和良 藤田医科大学, 医学部, 教授 (50362257)
齋藤 邦明 藤田医科大学, 保健学研究科, 教授 (80262765)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 特発性間質性肺炎 / 画像生成 / 画像分類 / CT画像 / 病理画像 / 人工知能 / 敵対的生成ネットワーク / 特発生間質性肺炎 / 深層学習 |
Outline of Research at the Start |
特発性間質性肺炎は国の難病に指定されており,適切な治療のために正確な診断を行う必要 があるが,その性質から症例が少なく診断できる医師も限られている.そこで本研究では特 発性間質性肺炎の診断を支援するため,健常あるいは高有病率疾患の膨大なデータを,希少 な特発性間質性肺炎のデータに変換する技術を開発し,得られた画像を用いて特発性間質性 肺炎の有無,病型,重症度,治療効果,予後など診断に有用な情報を得る手法を開発する.
|
Outline of Final Research Achievements |
Idiopathic interstitial pneumonia is designated as a rare disease, and accurate diagnosis is necessary for appropriate treatment. In this study, we developed a diagnostic support method for idiopathic interstitial pneumonia by combining image generation, transformation techniques, and deep learning. We used chest CT images and pathological tissue specimen images to extract affected areas and classify idiopathic interstitial pneumonia and general interstitial pneumonia. Additionally, we developed a method to convert and generate CT images of idiopathic interstitial pneumonia from general interstitial pneumonia images. Due to the limited number of specimens for idiopathic interstitial pneumonia, we employed a generative adversarial network (GAN) to generate similar pneumonia images and used them as training data. As a result, high classification accuracy was achieved even with a small number of cases.
|
Academic Significance and Societal Importance of the Research Achievements |
収集できるデータが少ない医用画像について、画像生成・変換技術の有用性を示すことができた。また、社会的には、特発性間質性肺炎の患者数が少なく診断が困難な現状に対し、画像解析技術の活用により診断の精度と効率を向上させることが期待される。これにより、早期の診断や適切な治療の提供が可能となり、患者の生活の質の向上や医療負担の軽減に寄与することが期待される。
|