• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of a new diagnostic technique for idiopathic interstitial pneumonia based on a synthesis of patient images

Research Project

Project/Area Number 20K08060
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionFujita Health University

Principal Investigator

Teramoto Atsushi  藤田医科大学, 保健学研究科, 教授 (00513780)

Co-Investigator(Kenkyū-buntansha) 塚本 徹哉  藤田医科大学, 医学部, 教授 (00236861)
今泉 和良  藤田医科大学, 医学部, 教授 (50362257)
齋藤 邦明  藤田医科大学, 保健学研究科, 教授 (80262765)
Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords特発性間質性肺炎 / 画像生成 / 画像分類 / CT画像 / 病理画像 / 人工知能 / 敵対的生成ネットワーク / 特発生間質性肺炎 / 深層学習
Outline of Research at the Start

特発性間質性肺炎は国の難病に指定されており,適切な治療のために正確な診断を行う必要 があるが,その性質から症例が少なく診断できる医師も限られている.そこで本研究では特 発性間質性肺炎の診断を支援するため,健常あるいは高有病率疾患の膨大なデータを,希少 な特発性間質性肺炎のデータに変換する技術を開発し,得られた画像を用いて特発性間質性 肺炎の有無,病型,重症度,治療効果,予後など診断に有用な情報を得る手法を開発する.

Outline of Final Research Achievements

Idiopathic interstitial pneumonia is designated as a rare disease, and accurate diagnosis is necessary for appropriate treatment. In this study, we developed a diagnostic support method for idiopathic interstitial pneumonia by combining image generation, transformation techniques, and deep learning. We used chest CT images and pathological tissue specimen images to extract affected areas and classify idiopathic interstitial pneumonia and general interstitial pneumonia. Additionally, we developed a method to convert and generate CT images of idiopathic interstitial pneumonia from general interstitial pneumonia images. Due to the limited number of specimens for idiopathic interstitial pneumonia, we employed a generative adversarial network (GAN) to generate similar pneumonia images and used them as training data. As a result, high classification accuracy was achieved even with a small number of cases.

Academic Significance and Societal Importance of the Research Achievements

収集できるデータが少ない医用画像について、画像生成・変換技術の有用性を示すことができた。また、社会的には、特発性間質性肺炎の患者数が少なく診断が困難な現状に対し、画像解析技術の活用により診断の精度と効率を向上させることが期待される。これにより、早期の診断や適切な治療の提供が可能となり、患者の生活の質の向上や医療負担の軽減に寄与することが期待される。

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (12 results)

All 2023 2022 2021 2020 Other

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (9 results) (of which Int'l Joint Research: 3 results) Remarks (1 results)

  • [Journal Article] Automated Classification of Idiopathic Pulmonary Fibrosis in Pathological Images Using Convolutional Neural Network and Generative Adversarial Networks2022

    • Author(s)
      Teramoto Atsushi、Tsukamoto Tetsuya、Michiba Ayano、Kiriyama Yuka、Sakurai Eiko、Imaizumi Kazuyoshi、Saito Kuniaki、Fujita Hiroshi
    • Journal Title

      Diagnostics

      Volume: 12 Issue: 12 Pages: 3195-3195

    • DOI

      10.3390/diagnostics12123195

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Analysis of Idiopathic Interstitial Pneumonia in CT Images U ing 3D U-Net2021

    • Author(s)
      N.Takeuchi, A.Teramoto, K.Imaizumi, K.Saito, H.Fujita
    • Journal Title

      Medical Image and Information Sciences

      Volume: 38 Pages: 126-131

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Presentation] Improved Classification Scheme of Idiopathic Interstitial Pneumonias in Histopathological Images Using Generative Adversarial Networks,2023

    • Author(s)
      Teramoto Atsushi、Tsukamoto Tetsuya、Michiba Ayano、Kiriyama Yuka、Sakurai Eiko、Imaizumi Kazuyoshi、Saito Kuniaki、Fujita Hiroshi
    • Organizer
      IFMIA 2023
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] ホールスライド画像を用いた特発性間質性肺炎の病型自動分類2022

    • Author(s)
      寺本篤司, 道塲彩乃, 桐山諭和, 櫻井映子, 塚本徹哉, 今泉和良, 齋藤邦明, 藤田広志
    • Organizer
      第41回 日本医用画像工学会大会
    • Related Report
      2022 Annual Research Report
  • [Presentation] 敵対的生成ネットワークと畳み込みニューラルネットワークを用いた病理画像における特発性間質性肺炎の自動鑑別2022

    • Author(s)
      寺本篤司, 道塲彩乃, 桐山諭和, 櫻井映子, 塚本徹哉, 今泉和良, 齋藤邦明, 藤田広志
    • Organizer
      医用画像情報学会 令和4年度秋季大会
    • Related Report
      2022 Annual Research Report
  • [Presentation] Attention mechanism and weakly supervised learning solve complicated problems: Principles and application to IIPs classification2021

    • Author(s)
      N.Takeuchi, A.Teramoto, K.Imaizumi, K.Saito, H.Fujita
    • Organizer
      RSNA2021
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] 弱教師あり学習を用いたCT画像における特発性間質性肺炎の分類2021

    • Author(s)
      竹内野々子, 寺本篤司, 今泉和良, 齋藤邦明,藤田広志
    • Organizer
      医用画像情報学会 令和3年度秋季(第191回)大会
    • Related Report
      2021 Research-status Report
  • [Presentation] Weakly Supervised Classification Scheme of Idiopathic Interstitial Pneumonia Using Attention-based Deep Multiple Instance Learning2021

    • Author(s)
      N.Takeuchi, A.Teramoto, K.Imaizumi, K.Saito, H.Fujita
    • Organizer
      第77回日本放射線技術学会総会学術大会
    • Related Report
      2021 Research-status Report
  • [Presentation] Classification and Segmentation of Idiopathic Interstitial Pneumonia Using 3D U-Net2021

    • Author(s)
      Nonoko Takeuchi, Atsushi Teramoto, Kazuyoshi Imaizumi, Kuniaki Saito, Hiroshi Fujita,
    • Organizer
      IFMIA 2021
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] End-to-End Model for Analysis of Idiopathic Interstitial Pneumonia Using 3D U-Net2020

    • Author(s)
      Nonoko Takeuchi, Atsushi Teramoto, Kazuyoshi Imaizumi, Kuniaki Saito, Hiroshi Fujita,
    • Organizer
      第76回日本放射線技術学会総会学術大会
    • Related Report
      2020 Research-status Report
  • [Presentation] 3D U-Netを用いたCT画像における特発性間質性肺炎の領域抽出及び鑑別2020

    • Author(s)
      竹内野々子, 寺本篤司, 今泉和良, 齋藤邦明,藤田広志
    • Organizer
      医用画像情報学会 令和2年度秋季(第188回)大会
    • Related Report
      2020 Research-status Report
  • [Remarks] 寺本研究室、研究業績

    • URL

      http://www.fujita-hu.ac.jp/~teramoto/publications.html

    • Related Report
      2020 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi