Project/Area Number |
20K08093
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 52040:Radiological sciences-related
|
Research Institution | Kindai University |
Principal Investigator |
Doi Hiroshi 近畿大学, 医学部, 講師 (50529047)
|
Co-Investigator(Kenkyū-buntansha) |
門前 一 近畿大学, 医学部, 准教授 (10611593)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 知識ベース治療計画 / 知識ベース放射線治療計画 / 強度変調放射線治療 / 非小細胞肺癌 / 機械学習 / 深層学習 / 放射線治療 / 肺癌 |
Outline of Research at the Start |
局所進行肺癌に対する強度変調放射線治療(IMRT)の治療計画を腫瘍の同定から標的の設定および治療計画立案まで完全に自動化する治療計画システムを確立し、検証することを目指す。我々はまず、原発性肺癌へのIMRTにおいて臨床実用が可能な深層学習モデルを確立する。次に正常組織のみならず治療標的の自動描出を行うプログラムを新たに作成する。これにより原発性肺癌へのIMRTを一般化し、実施に要する資源を大幅に削減できる。
|
Outline of Final Research Achievements |
Based on 561 intensity-modulated radiation therapy plans used in clinical practice across multiple facilities, a machine learning model was developed to estimate the doses of radiation that each structure within a patient's body would receive, and plans were created automatically without any human intervention. The plan quality was found to be equivalent to those created using traditional methods. Furthermore, the use of this model allowed for standardization of treatment plan quality by demonstrating consistency in the doses of radiation delivered to the rectum and bladder, independent of the treatment facility.
|
Academic Significance and Societal Importance of the Research Achievements |
強度変調放射線治療を用いることによって病変部周囲の放射線量をより低減できるようになるため放射線治療の適応症例が拡大されている一方で、治療計画作成には計画者の知識や経験に依存するところが大きい。本研究によって人が介在しない治療計画作成が可能になれば医療の均てん化につながる。また臨床試験に用いた場合には一定水準の放射線治療を実施された患者の臨床成績を基に新しい治療法の有効性を比較できる。
|