• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of low-dose digital breast tomosynthesis system based on hybrid deep learning processing for image quality improvement

Research Project

Project/Area Number 20K08143
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionKitasato University

Principal Investigator

GOMI TSUTOMU  北里大学, 医療衛生学部, 教授 (10458747)

Co-Investigator(Kenkyū-buntansha) 鯉淵 幸生  独立行政法人国立病院機構高崎総合医療センター(臨床研究部), 臨床研究部, 副院長 (10323346)
Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords乳がん / デジタルトモシンセシス / 深層学習 / トモシンセシス / 被ばく線量低減
Outline of Research at the Start

乳がんの死亡率は増加傾向であり、被ばく線量低減と高濃度乳房を含む微細病変の検出向上 (以下、画質改善) を実現する乳腺検診システムの整備が必要である。我々は、乳腺デジタルトモシンセシスの被ばく線量低減がどのようなプロセスで画質劣化につながっているのかを調査し、被ばく線量と画質の相関関係および最適化の必要性を解明することに成功した。これらの成果から本研究では、更なる被ばく線量低減と画質改善を実現するために、ラプラシアンピラミッド分解再構成・異方性拡散処理と高解像度化処理に基づく深層学習を組み合わせた複合型深層学習処理に着目し、最適化を図った新たな乳腺デジタルトモシンセシスシステムを開発する。

Outline of Final Research Achievements

In this study, we evaluated the improvement of image quality in digital breast tomosynthesis under low-radiation dose conditions of pre-reconstruction processing using conditional generative adversarial networks [cGAN (pix2pix)]. pix2pix pre-reconstruction processing with filtered back projection (FBP) was compared with and without multiscale bilateral filtering (MSBF) during pre-reconstruction processing. This phantom study revealed that an approximately 50% reduction in radiation-dose is feasible using our proposed pix2pix pre-reconstruction processing. Thus, pix2pix shows promise for integration into the clinical application workflow to reduce image noise while maintaining image quality in breast tomosynthesis.

Academic Significance and Societal Importance of the Research Achievements

新しい乳腺デジタルトモシンセシスシステムは、臨床で使用している通常の照射線量より少ない照射線量での撮像において画質改善を含めた有用性が期待できる。深層学習を応用した高解像度化処理に伴う微細病変の抽出能向上を実現できる新しい乳腺デジタルトモシンセシスシステムは、被ばく線量の低減と微細病変の診断能向上を図るものであり、画像診断の精度向上に寄与できる。本研究の成果は、更なる被ばく線量低減と画質改善につながるものであり、乳がんの早期発見に貢献することが期待できる。

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (6 results)

All 2022 2021 2020

All Journal Article (3 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results,  Open Access: 3 results) Presentation (2 results) (of which Int'l Joint Research: 2 results) Book (1 results)

  • [Journal Article] Evaluation of a Generative Adversarial Network to Improve Image Quality and Reduce Radiation-Dose during Digital Breast Tomosynthesis2022

    • Author(s)
      Gomi Tsutomu、Kijima Yukie、Kobayashi Takayuki、Koibuchi Yukio
    • Journal Title

      Diagnostics

      Volume: 12 Issue: 2 Pages: 495-495

    • DOI

      10.3390/diagnostics12020495

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Usefulness of a Metal Artifact Reduction Algorithm in Digital Tomosynthesis Using a Combination of Hybrid Generative Adversarial Networks2021

    • Author(s)
      Gomi Tsutomu、Sakai Rina、Hara Hidetake、Watanabe Yusuke、Mizukami Shinya
    • Journal Title

      Diagnostics

      Volume: 11 Issue: 9 Pages: 1629-1629

    • DOI

      10.3390/diagnostics11091629

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Improved digital chest tomosynthesis image quality by use of a projection-based dual-energy virtual monochromatic convolutional neural network with super resolution2020

    • Author(s)
      Gomi Tsutomu、Hara Hidetake、Watanabe Yusuke、Mizukami Shinya
    • Journal Title

      PLOS ONE

      Volume: 15 Issue: 12 Pages: e0244745-e0244745

    • DOI

      10.1371/journal.pone.0244745

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Usefulness of generative adversarial network-based low-dose digital breast tomosynthesis for image quality improvement2022

    • Author(s)
      Tsutomu Gomi, Kotomi Ishihara, Yukio Koibuchi, Hidetake Hara, Yusuke Watanabe, Shinya Mizukami
    • Organizer
      Radiological Society of North America (RSNA)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Development of a novel algorithm to improve image quality in chest digital tomosynthesis using convolutional neural network with super-resolution2021

    • Author(s)
      Tsutomu Gomi
    • Organizer
      SPIE Medical Imaging
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Book] Horizons in Computer Science Research. Volume 182020

    • Author(s)
      Thomas S. Clary (Editor), Tsutomu Gomi
    • Total Pages
      246
    • Publisher
      Nova Science Publishers
    • Related Report
      2020 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi