Project/Area Number |
20K08997
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 55010:General surgery and pediatric surgery-related
|
Research Institution | Kanagawa Cancer Center Research Institute |
Principal Investigator |
Oshima Takashi 地方独立行政法人神奈川県立病院機構神奈川県立がんセンター(臨床研究所), その他部局等, 部長 (10448665)
|
Co-Investigator(Kenkyū-buntansha) |
篠原 尚 兵庫医科大学, 医学部, 教授 (70319549)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | 人工知能技術 / 内視鏡外科手術 / 止血支援システム / 手術支援システム / 人工知能 / 内視鏡手術 |
Outline of Research at the Start |
内視鏡手術が,開腹手術と比較してより問題となるのは出血である。出血は周囲組織を赤く染めることで,解剖構造の認識を著しく低下させて,正確,安全かつ迅速な内視鏡手術の進行を妨げる。さらに,出血量が多くなると、開腹手術への移行が必要となるばかりでなく,術後合併症の増加を招き,長期生存を低下させることが知られている。そこでわれわれは, AIを用いて内視鏡外科手術における出血を自動認識し,外科医が必要とする出血情報を選別,出血したシーンの動画を腹腔鏡のモニターと同一のモニター上で自動逆再生して,止血操作を正確かつ迅速に行う止血支援システムの開発を行い,動物実験による検証を経て,臨床での実用化を目指す。
|
Outline of Final Research Achievements |
We constructed a hemostasis support system in which AI automatically recognizes bleeding in laparoscopic surgery and plays a repeat on the screen. As a result of verification in surgery, over- and under-detection of bleeding was observed. Since this was thought to be due to fluctuations in accuracy among endoscopic systems, we created teacher images from multiple types of endoscopic systems, and the image annotated by the physician to the evaluation image was used as the correct image. The Dice coefficient was used as the evaluation index.The Dice coefficient increased with image learning and reached 0.567. Since the region is generally matched to the naked eye when the Dice coefficient is 0.8 or higher, we will expand the training data with this as the target level and aim for effective use in actual clinical practice.
|
Academic Significance and Societal Importance of the Research Achievements |
内視鏡外科手術の躍進は目覚ましいが,内視鏡外科手術でより問題となるのは出血である。出血は、解剖構造の認識を著しく低下させ,正確,安全かつ迅速な手術の進行を妨げる。さらに,出血量が多くなると、開腹手術への移行を余儀なくさせるばかりでなく,術後合併症の増加を招き,長期生存を低下させ、医療費も増大させる。そこでわれわれは, AIにより、出血を自動認識し、外科医が必要とする出血情報を選別して,出血シーンの動画を腹腔鏡のモニターと同一のモニターの右上の画面上で自動逆再生することで,内視鏡外科手術における止血操作を正確且つ迅速に行う止血支援システムの開発がほぼ完成し、臨床での実用化を目指している。
|