• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of machine learning models to support medical treatment in the field of resuscitation and emergency medicine

Research Project

Project/Area Number 20K09302
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 55060:Emergency medicine-related
Research InstitutionThe University of Tokyo

Principal Investigator

Seki Tomohisa  東京大学, 医学部附属病院, 助教 (30528873)

Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Keywords救急医療 / 蘇生医療 / 機械学習 / 予測モデル / 救急医学 / 蘇生 / 心肺停止 / 電子診療録 / SS-MIX2 / 救急 / 循環器 / 心肺蘇生
Outline of Research at the Start

本研究では、蘇生救急領域の診療フローにおける臨床判断や診療の管理を支援する機械学習モデルを作成する事で、臨床成績の向上、臨床医の負担軽減へ繋がるモデルの開発を行う。具体的には、総務省消防庁の救急蘇生統計(ウツタインデータ)を利用した心原性心肺停止の予後予測モデルの開発、東京大学医学部附属病院の電子診療録データを用いた救急入院における重症度評価モデルの開発、AED実波形データを用いた深層学習による致死性不整脈検出モデルの開発を行う。

Outline of Final Research Achievements

The purpose of this study is to develop a machine learning model that supports clinical judgment and management in the flow of medical treatment in the field of emergency resuscitation, improves clinical outcomes, and reduces the burden on clinicians. We developed a machine learning model to predict cases of presumed cardiogenic cardiopulmonary arrest based on information at the time of arrival at the hospital, and a machine learning model to predict the risk of in-hospital mortality based on blood sampling data and patient background information at the time of admission. This study demonstrated the applicability of machine learning technology to the field of emergency resuscitation, and the risk stratification by machine learning is expected to contribute to the improvement of the quality of medical care.

Academic Significance and Societal Importance of the Research Achievements

本研究において、本領域に対する機械学習の適用性を検討した研究は限られていたが、現存するデータベースを用いた予測モデルの開発がより正確なリスク層別化に資する可能性があることを示し、医療の質の向上に資する可能性が期待できると考えられた。診療に伴って蓄積されつつも、人間が扱いやすい粒度まで単純化されたスコアなどで利用しきれていない患者データの特徴を利用することが可能になると考えられ、現状でデータから定量化できていない情報を計算機上で扱い、予測を出力するモデルの重要性が示された。

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (4 results)

All 2022 2021

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 2 results) Presentation (1 results)

  • [Journal Article] Treatment Discontinuation Prediction in Patients With Diabetes Using a Ranking Model: Machine Learning Model Development2022

    • Author(s)
      Kurasawa Hisashi、Waki Kayo、Chiba Akihiro、Seki Tomohisa、Hayashi Katsuyoshi、Fujino Akinori、Haga Tsuneyuki、Noguchi Takashi、Ohe Kazuhiko
    • Journal Title

      JMIR Bioinformatics and Biotechnology

      Volume: 3 Issue: 1 Pages: e37951-e37951

    • DOI

      10.2196/37951

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] The Effectiveness of a Deep Learning Model to Detect Left Ventricular Systolic Dysfunction from Electrocardiograms2021

    • Author(s)
      Katsushika Susumu、Ieki Hirotaka, et al.
    • Journal Title

      International Heart Journal

      Volume: 62 Issue: 6 Pages: 1332-1341

    • DOI

      10.1536/ihj.21-407

    • NAID

      130008122372

    • ISSN
      1349-2365, 1349-3299
    • Year and Date
      2021-11-29
    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Machine learning-based prediction of in-hospital mortality using admission laboratory data2021

    • Author(s)
      Tomohisa Seki, Yoshimasa Kawazoe, Kazuhiko Ohe
    • Journal Title

      PLOS ONE

      Volume: 16 Issue: 2 Pages: e0246640-e0246640

    • DOI

      10.1371/journal.pone.0246640

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] グラフ表現学習を用いた教師なし学習による電子カルテデータ構造の自動特徴抽出手法の開発2022

    • Author(s)
      関倫久
    • Organizer
      第42回医療情報学連合大会(第23回日本医療情報学会学術大会)
    • Related Report
      2022 Annual Research Report

URL: 

Published: 2020-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi