• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Applications of probabilistic combinatorics and extremal set theory to deriving bounds in classical and quantum coding theory

Research Project

Project/Area Number 20K11668
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60010:Theory of informatics-related
Research InstitutionChiba University

Principal Investigator

Fujiwara Yuichiro  千葉大学, 大学院工学研究院, 准教授 (20756142)

Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords符号理論 / 組合せ論 / 極値集合論 / 確率論 / 自己同期符号 / 組合せ符号 / 誤り訂正符号 / 確率的組合せ論 / 誤り訂正 / 同期 / グラフ理論 / ネットワーク / グループテスティング / センサーネットワーク
Outline of Research at the Start

情報科学においては,様々な理論限界の解明が重要である.例えば,情報理論が学問として生まれる契機となった「シャノンの定理」はまさに,情報圧縮と誤り訂正における人類の限界を,数学的に導出している.情報科学の基盤となる数学においても限界探求は重要であり,近年,与えられた条件を極限状態で達する集合を考究する学問である極値集合論が脚光を浴びている.本研究では,この極値集合論およびそこで中心的役割を果たす確率的組合せ論を,情報科学において新しい応用方法を確立し,同期用系列や高速情報圧縮回路,量子誤り訂正といった分野において活躍させ,ひいては極値集合論と確率的組合せ論の発展にも寄与することを目的とする.

Outline of Final Research Achievements

The primary purpose of this research project has been to find and explore novel applications of probabilistic and extremal combinatorics to coding theory and help develop a theory that connects the two types of combinatorics and coding theory in new ways. For this purpose, we investigated several well-known unsolved coding-theoretic problems that had resisted successful applications of probabilistic arguments and related extremal set-theoretic approaches. The highlight of the results obtained by this research project is the resolution of an important problem in coding theory that had been open for more than 50 years. We proved that the asymptotic rate of what is known as an optimal difference system of sets achieves the well-known Levenshtein bound. This means that, in theory, we can develop a computationally efficient synchronization system even under the presence of strong additive noise.

Academic Significance and Societal Importance of the Research Achievements

本研究で得られた成果はさまざまであるが,その最大のものは前項で述べた,最適 DSS の漸近符号化率が Levenshtein 限界を如何なる要求雑音耐性水準においても達成することを証明したことである.最適 DSS はデジタル通信における送信者と受信者の同期を,雑音下においても高い信頼性を保証しつつ効率的に行うための数学的構造物である.本研究では DSS の理論限界を明らかにするとともに,簡単に漸近最適である DSS を構成するアルゴリズムを提示しており,数学的にも,情報理論的にも,また電気電子工学的にも興味深い成果である.

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (9 results)

All 2023 2022 2020

All Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (6 results) (of which Int'l Joint Research: 4 results,  Invited: 1 results)

  • [Journal Article] The Asymptotics of Difference Systems of Sets for Synchronization and Phase Detection2023

    • Author(s)
      Y. Tsunoda and Y. Fujiwara
    • Journal Title

      Proceedings of the 2023 IEEE International Symposium of Information Theory

      Volume: to appear

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Weak Superimposed Codes of Improved Asymptotic Rate and Their Randomized Construction2022

    • Author(s)
      Y. Tsunoda and Y. Fujiwara
    • Journal Title

      Proceedings of the 2022 IEEE International Symposium of Information Theory

      Volume: Aug Pages: 784-789

    • DOI

      10.1109/isit50566.2022.9834680

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Weak Superimposed Codes of Improved Asymptotic Rate and Their Randomized Construction2022

    • Author(s)
      Y. Tsunoda and Y. Fujiwara
    • Journal Title

      Proceedings of the 2022 IEEE International Symposium on Information Theory

      Volume: 1

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Presentation] The Asymptotics of Difference Systems of Sets for Synchronization and Phase Detection2023

    • Author(s)
      Y. Tsunoda and Y. Fujiwara
    • Organizer
      2023 IEEE International Symposium of Information Theory
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Weak Superimposed Codes of Improved Asymptotic Rate and Their Randomized Construction2022

    • Author(s)
      Y. Tsunoda and Y. Fujiwara
    • Organizer
      2022 IEEE International Symposium of Information Theory
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Bounds on the estimation error of syndrome-based channel parameter estimation by linear codes2022

    • Author(s)
      Y. Fujiwara
    • Organizer
      29th British Combinatorial Conference
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Bounds and Polynomial-Time Construction Algorithm for Weak Superimposed Codes2022

    • Author(s)
      Y. Tsunoda and Y. Fujiwara
    • Organizer
      離散数学とその応用研究集会2022 ミニシンポジウム
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Weak Superimposed Codes of Improved Asymptotic Rate and Their Randomized Construction2022

    • Author(s)
      Y. Tsunoda and Y. Fujiwara
    • Organizer
      2022 IEEE International Symposium on Information Theory
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Sublinear-time algorithm for near domination in mobile wireless sensor networks2020

    • Author(s)
      藤原祐一郎
    • Organizer
      離散数学とその応用研究集会2020
    • Related Report
      2020 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi