• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on resource allocation problems by discrete convex analysis

Research Project

Project/Area Number 20K11697
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60020:Mathematical informatics-related
Research InstitutionThe Institute of Statistical Mathematics (2021-2023)
Tokyo Metropolitan University (2020)

Principal Investigator

Murota Kazuo  統計数理研究所, 大学統計教員育成センター, 特任教授 (50134466)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords離散凸解析 / 最適化理論 / 数理工学 / 情報基礎 / アルゴリズム / 経済理論 / 情報基盤 / 資源配分問題
Outline of Research at the Start

「離散凸解析」は,凸関数と離散構造と併せて考察する最適化の理論であり,連続世界の凸解析に匹敵する理論を離散世界に構築することを目標とした提唱された,連続と離散を繋ぐパラダイムである.
本研究では,離散凸解析の双対理論を軸に据えて,離散資源の公平配分問題に関する理論とアルゴリズムを構築する.この問題に対して,コンピュータの負荷分散,グラフ理論における向き付け問題,経済学・ゲーム理論における不可分財の公平配分などの様々な文脈において個別の成果が得られているが,離散凸解析に基づく一般的な枠組を作ることによって,離散凸解析の特徴である「分野の横断性」をより発展させる.

Outline of Final Research Achievements

Discrete Convex Analysis is a theory of optimization that connects continuous optimization and discrete optimization by establishing a general framework for discrete optimization comparable to the conventional convex analysis in the continuous setting. In this research project we aimed at developing a general framework for discrete resource allocation problems on the basis of the duality theory in discrete convex analysis. We have obtained theoretical results and algorithms for discrete structures such as M-convex sets (sets of integer points in an integral base polyhedron), M2-convex sets (sets of integer points in the intersection two integral base polyhedra), integral network flows, and integral submodular flows.

Academic Significance and Societal Importance of the Research Achievements

離散凸解析は,最適化において「連続と離散を繋ぐパラダイム」であり,様々な分野で別々に考察されてきた数学的な構造を,分野を越えて理解して,相互に利用するための枠組みである.離散凸解析の理論やアルゴリズムが一般的な形で整理されることによって,コンピュータ科学,オペレーションズ・リサーチ,経済学,ゲーム理論,数学などの様々な分野での共通の言葉やアプローチが生まれ,学問諸分野の交流が可能となる.さらには,その共通の知識に基づいて,様々な応用が繋がり発展していくことが期待される.

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (24 results)

All 2023 2022 2021 2020 Other

All Int'l Joint Research (1 results) Journal Article (13 results) (of which Int'l Joint Research: 6 results,  Peer Reviewed: 13 results,  Open Access: 4 results) Presentation (8 results) (of which Int'l Joint Research: 1 results,  Invited: 2 results) Remarks (2 results)

  • [Int'l Joint Research] Eotvos大学(ハンガリー)

    • Related Report
      2023 Annual Research Report
  • [Journal Article] INCLUSION AND INTERSECTION RELATIONS BETWEEN FUNDAMENTAL CLASSES OF DISCRETE CONVEX FUNCTIONS2023

    • Author(s)
      Moriguchi Satoko、Murota Kazuo
    • Journal Title

      Journal of the Operations Research Society of Japan

      Volume: 66 Issue: 3 Pages: 187-217

    • DOI

      10.15807/jorsj.66.187

    • ISSN
      0453-4514, 2188-8299
    • Year and Date
      2023-07-31
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Fair Integral Network Flows2023

    • Author(s)
      Andras Frank, Kazuo Murota
    • Journal Title

      Mathematics of Operations Research

      Volume: 48 Issue: 3 Pages: 1393-1422

    • DOI

      10.1287/moor.2022.1303

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Recent progress on integrally convex functions2023

    • Author(s)
      Kazuo Murota, Akihisa Tamura
    • Journal Title

      Japan Journal of Industrial and Applied Mathematics

      Volume: 40 Issue: 3 Pages: 1445-1499

    • DOI

      10.1007/s13160-023-00589-4

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Decreasing minimization on base-polyhedra: Relation between discrete and continuous cases2023

    • Author(s)
      A. Frank, K. Murota
    • Journal Title

      Japan Journal of Industrial and Applied Mathematics

      Volume: 40 Issue: 1 Pages: 183-221

    • DOI

      10.1007/s13160-022-00511-4

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Fair integral submodular flows2022

    • Author(s)
      A. Frank, K. Murota
    • Journal Title

      Discrete Applied Mathematics

      Volume: 320 Pages: 416-434

    • DOI

      10.1016/j.dam.2022.06.015

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Note on the polyhedral description of the Minkowski sum of two L-convex sets2022

    • Author(s)
      Moriguchi Satoko、Murota Kazuo
    • Journal Title

      Japan Journal of Industrial and Applied Mathematics

      Volume: 40 Issue: 1 Pages: 223-263

    • DOI

      10.1007/s13160-022-00512-3

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Discrete Fenchel duality for a pair of integrally convex and separable convex functions2022

    • Author(s)
      Murota, K. and Tamura, A.
    • Journal Title

      Japan Journal of Industrial and Applied Mathematics

      Volume: - Issue: 2 Pages: 599-630

    • DOI

      10.1007/s13160-022-00499-x

    • NAID

      210000165146

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Decreasing minimization on M-convex sets: Background and structures2021

    • Author(s)
      A. Frank, K. Murota
    • Journal Title

      Mathematical Programming

      Volume: - Issue: 1-2 Pages: 977-1025

    • DOI

      10.1007/s10107-021-01722-2

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Decreasing minimization on M-convex sets: Algorithms and applications2021

    • Author(s)
      A. Frank, K. Murota
    • Journal Title

      Mathematical Programming

      Volume: - Issue: 1-2 Pages: 1027-1068

    • DOI

      10.1007/s10107-021-01711-5

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A note on M-convex functions on jump systems2021

    • Author(s)
      K. Murota
    • Journal Title

      Discrete Applied Mathematics

      Volume: 289 Pages: 492-502

    • DOI

      10.1016/j.dam.2020.09.019

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] A discrete convex min-max formula for box-TDI polyhedra2021

    • Author(s)
      K. Murota, A. Frank
    • Journal Title

      Mathematics of Operations Research

      Volume: -

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On basic operations related to network induction of discrete convex functions2020

    • Author(s)
      K. Murota
    • Journal Title

      Optimization Methods and Software

      Volume: - Issue: 2-3 Pages: 519-559

    • DOI

      10.1080/10556788.2020.1818080

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Relationship of two formulations for shortest bibranchings2020

    • Author(s)
      K. Murota, K. Takazawa
    • Journal Title

      Japan Journal of Industrial and Applied Mathematics

      Volume: 38 Issue: 1 Pages: 141-161

    • DOI

      10.1007/s13160-020-00432-0

    • NAID

      210000178025

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] 準M#凸関数の最小化に関する諸性質2023

    • Author(s)
      塩浦昭義,室田 一雄
    • Organizer
      京都大学数理解析研究所研究集会「数理最適化: 理論と実践」
    • Related Report
      2023 Annual Research Report
  • [Presentation] 準M#凸関数の最小化について2023

    • Author(s)
      塩浦昭義,室田 一雄
    • Organizer
      電子情報通信学会コンピュテーション研究会
    • Related Report
      2023 Annual Research Report
  • [Presentation] L2凸集合の多面体表現2022

    • Author(s)
      森口聡子,室田一雄
    • Organizer
      日本オペレーションズ・リサーチ学会2022年秋季研究発表会
    • Related Report
      2022 Research-status Report
  • [Presentation] 離散凸解析の偶然と必然2021

    • Author(s)
      室田一雄
    • Organizer
      日本オペレーションズ・リサーチ学会2021年秋季研究発表会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 整凸関数と分離凸関数に対するFenchel双対性2021

    • Author(s)
      室田一雄,田村明久
    • Organizer
      日本オペレーションズ・リサーチ学会2021年秋季研究発表会
    • Related Report
      2021 Research-status Report
  • [Presentation] 離散凸関数の族に関する包含・交わり関係2021

    • Author(s)
      森口聡子,室田一雄
    • Organizer
      日本オペレーションズ・リサーチ学会2021年秋季研究発表会
    • Related Report
      2021 Research-status Report
  • [Presentation] Introduction to discrete convex functions2021

    • Author(s)
      K. Murota
    • Organizer
      The 69-th Yunchou Qianli Forum lecture at Operations Research Society of China
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Min-max formulas for separable discrete convex minimization on box-TDI polyhedra2021

    • Author(s)
      K. Murota, A. Frank
    • Organizer
      日本オペレーションズ・リサーチ学会2021年春季研究発表会, 2-B-7
    • Related Report
      2020 Research-status Report
  • [Remarks] DCP (Discrete Convex Paradigm)

    • URL

      http://ist.ksc.kwansei.ac.jp/~tutimura/DCP/

    • Related Report
      2022 Research-status Report
  • [Remarks] DCP (Discrete Convex Paradigm)

    • URL

      http://cs.kwansei.ac.jp/~tutimura/DCP/

    • Related Report
      2020 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi