• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Theoretical development on statistical inference for local complex structure of temporal and spatial data

Research Project

Project/Area Number 20K11719
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60030:Statistical science-related
Research InstitutionWaseda University

Principal Investigator

LIU Yan  早稲田大学, 理工学術院, 専任講師 (10754856)

Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords時空間データ / 局所的統計解析 / 局所グレンジャー因果性 / 時変スペクトル / 予測誤差 / 高次漸近論 / 長期記憶モデル / 非線形時系列 / 分散分析 / コントラスト関数 / 歪分布 / EEGデータ / 主成分分析 / 高次元時系列 / 縮小推定 / ミニマックス / フィッシャー情報量 / 統計科学 / 時系列解析 / 統計的検定論 / 漸近理論
Outline of Research at the Start

経済・金融や環境学など、さまざまな場面で、時空間データが観測されている。これまで時空間データ解析に関する統計理論は主に、観測系列全体を線形・非線形モデルでモデリングし、多くの観測のもとでの統計量の性質を調査対象としてきた。しかし、一変量時空間データの統計解析だけではまだ解決できない現実問題が多くある。実際、大規模な時空間データは局所的に複雑な構造を持ち、新たな統計的数理理論を構成する必要がある。本研究は時空間データの部分観測の位相幾何構造に着目し、データの従属構造の局所的変化が大域的な構造変化をもたらすことを想定して、その動的発展変化に対する局所時空間データの統計解析手法の基礎理論を構築する。

Outline of Final Research Achievements

With the recent advancement in acquiring spatiotemporal data, it has become important to statistically analyze its complex structure. In conventional time series analysis, statistical analysis of stationary processes has been the main focus of research. In contrast, this research focuses on the local structure of spatiotemporal data and proposes a new statistical analysis method. This is a type of high-dimensional statistical analysis and poses a challenging task. For three years of research, we proposed a weighted Whittle likelihood method using kernels to capture local complex structures and developed its asymptotic theory. Furthermore, we applied the test of local Granger causality to brainwave data, capturing the changes in Granger causality between brainwaves and revealing, for the first time, the temporal variations in brainwave interactions among epilepsy patients.

Academic Significance and Societal Importance of the Research Achievements

ビッグデータ時代の到来により、大規模なデータでも簡単に取得できるようになった。降雨量等の環境学データ、生物学データ、経済データや金融データ等多くの場合、時空間データとなっている。このような大規模な時空間データは往々にして、不規則で非定常性が伴う。本研究は局所的に複雑な構造をもつ時空間データの数理理論を展開する。従来の主な予測モデルがブラックボックス・モデリングを利用しており、定常性やエルゴード性等予測性能に関係しているにもかかわらず、社会的にそのデータ分析手法が広く展開されつつある。本研究で展開する理論を通して、すでに開始している自動車産業との「将来予測技術」の共同研究への応用も期待できる。

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (57 results)

All 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (3 results) Journal Article (9 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 9 results,  Open Access: 3 results) Presentation (37 results) (of which Int'l Joint Research: 15 results,  Invited: 21 results) Book (3 results) Funded Workshop (5 results)

  • [Int'l Joint Research] University of Bologna/University of Roma ‘Tor Vergata’(イタリア)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] University of Luxemberg(ルクセンブルク)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] KAUST(サウジアラビア)

    • Related Report
      2020 Research-status Report
  • [Journal Article] A minimum contrast estimation for spectral densities of multivariate time series.2023

    • Author(s)
      Liu Yan
    • Journal Title

      Research Papers in Statistical Inference for Time Series and Related Models

      Pages: 325-342

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Sparse principal component analysis for high-dimensional stationary time series2023

    • Author(s)
      Fujimori Kou、Goto Yuichi、Liu Yan、Taniguchi Masanobu
    • Journal Title

      Scandinavian Journal of Statistics

      Pages: 1-42

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Statistical Inference for Time Series Based on Prediction2022

    • Author(s)
      劉 言
    • Journal Title

      Journal of the Japan Statistical Society, Japanese Issue

      Volume: 52 Issue: 1 Pages: 53-68

    • DOI

      10.11329/jjssj.52.53

    • ISSN
      0389-5602, 2189-1478
    • Year and Date
      2022-09-13
    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Higher‐order asymptotics of minimax estimators for time series2022

    • Author(s)
      Xu Xiaofei、Liu Yan、Taniguchi Masanobu
    • Journal Title

      Journal of Time Series Analysis

      Volume: 44 Issue: 2 Pages: 247-257

    • DOI

      10.1111/jtsa.12661

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Homogeneity tests for one-way models with dependent errors under correlated groups2022

    • Author(s)
      Goto Yuichi、Arakaki Koichi、Liu Yan、Taniguchi Masanobu
    • Journal Title

      TEST

      Volume: 32 Issue: 1 Pages: 163-183

    • DOI

      10.1007/s11749-022-00828-9

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Shrinkage estimation for multivariate time series2021

    • Author(s)
      Liu Yan、Tanida Yoshiyuki、Taniguchi Masanobu
    • Journal Title

      Statistical Inference for Stochastic Processes

      Volume: 24 Issue: 3 Pages: 733-751

    • DOI

      10.1007/s11203-021-09248-2

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Minimax estimation for time series models2021

    • Author(s)
      Liu Yan、Taniguchi Masanobu
    • Journal Title

      METRON

      Volume: 79 Issue: 3 Pages: 353-359

    • DOI

      10.1007/s40300-021-00217-6

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Minimax estimation for time series models2021

    • Author(s)
      Liu Yan、Taniguchi Masanobu
    • Journal Title

      Metron

      Volume: -

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Robust Linear Interpolation and Extrapolation of Stationary Time Series in Lp2019

    • Author(s)
      Liu Yan、Xue Yujie、Taniguchi Masanobu
    • Journal Title

      Journal of Time Series Analysis

      Volume: 41 Issue: 2 Pages: 229-248

    • DOI

      10.1111/jtsa.12502

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Sparse principal component analysis for high-dimensional stationary time series2023

    • Author(s)
      Fujimori Kou、Goto Yuichi、Liu Yan、Taniguchi Masanobu
    • Organizer
      NUS-WASEDA Workshop 2023
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Long-memory Log-linear Zero-inflated Generalized Poisson Autoregression for Covid-19 Pandemic Modelling2023

    • Author(s)
      Xu Xiaofei、Chen Ying、Liu Yan、Goto Yuichi、Taniguchi Masanobu
    • Organizer
      NUS-WASEDA Workshop 2023
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Semiparametric empirical likelihood for circular distribution2023

    • Author(s)
      Liu Yan、U LAN、Taniguchi Masanobu
    • Organizer
      Kanazawa International Seminar
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] A minimum contrast estimation for spectral densities of multivariate time series2022

    • Author(s)
      Liu Yan
    • Organizer
      Waseda Mini-Workshop「Recent development on time series analysis and related topics」
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 高次元・定常時系列に対するスパース主成分分析2022

    • Author(s)
      Fujimori Kou、Goto Yuichi、Liu Yan、Taniguchi Masanobu
    • Organizer
      科研費シンポジウム「大規模複雑データの理論と方法論~新たな発展と関連分野への応用~」
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Semiparametric empirical likelihood for circular distribution2022

    • Author(s)
      Liu Yan
    • Organizer
      Waseda-Bologna Time Series Workshop
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Detection of relevant change in frequency domain2022

    • Author(s)
      Liu Yan
    • Organizer
      Waseda-Rome Time Series Workshop
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] The Lasso-based principal component analysis for high-dimensional stationary time series2022

    • Author(s)
      Fujimori Kou、Goto Yuichi、Liu Yan、Taniguchi Masanobu
    • Organizer
      日本数学会・北海道大学
    • Related Report
      2022 Annual Research Report
  • [Presentation] A minimum contrast estimation for spectral densities of multivariate time se- ries2022

    • Author(s)
      Liu Yan
    • Organizer
      日本数学会・北海道大学
    • Related Report
      2022 Annual Research Report
  • [Presentation] Sparse principal component analysis for high-dimensional stationary time series2022

    • Author(s)
      Fujimori Kou、Goto Yuichi、Liu Yan、Taniguchi Masanobu
    • Organizer
      科研費シンポジウム「データサイエンスと周辺領域の双方向的理解への挑戦」
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Statistical inference for local Granger causality2022

    • Author(s)
      Liu Yan、Omabao Hernando、Taniguchi Masanobu
    • Organizer
      科研費シンポジウム「データサイエンスと周辺領域の双方向的理解への挑戦」
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] The Lasso-based principal component analysis for high-dimensional stationary time series2022

    • Author(s)
      Fujimori Kou、Goto Yuichi、Liu Yan、Taniguchi Masanobu
    • Organizer
      九州大学・統計セミナー
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] The Lasso-based principal component analysis for high-dimensional stationary time series2022

    • Author(s)
      Fujimori Kou、Goto Yuichi、Liu Yan、Taniguchi Masanobu
    • Organizer
      EcoSta2022・龍谷大学
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Detection of relevant change in frequency domain2022

    • Author(s)
      Liu Yan
    • Organizer
      EcoSta2022・龍谷大学
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On the model selection of symmetric alpha-stable processes2022

    • Author(s)
      劉 言
    • Organizer
      日本数学会
    • Related Report
      2021 Research-status Report
  • [Presentation] Sparse principal component analysis for high-dimensional stationary time series2022

    • Author(s)
      藤森 洸、後藤 佑一、劉 言、谷口 正信
    • Organizer
      日本数学会
    • Related Report
      2021 Research-status Report
  • [Presentation] Sphericity test for time series2022

    • Author(s)
      Liu, Yan
    • Organizer
      Otsu International Seminar
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Higher order asymptotics of minimax estimators for time series2022

    • Author(s)
      Xu, Xiaofei; Liu, Yan; Taniguchi, Masanobu
    • Organizer
      Otsu International Seminar
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Statistical and Topological Inference for Local Granger Causality2022

    • Author(s)
      Liu, Yan
    • Organizer
      Waseda International Symposium
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Sparse principal component analysis for high-dimensional stationary time series2022

    • Author(s)
      Fujimori, Kou; Goto, Yuichi; Liu, Yan; Taniguchi, Masanobu
    • Organizer
      Waseda International Symposium
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Homogeneity tests for one-way models with dependent errors under correlated groups2022

    • Author(s)
      Goto, Yuichi; Arakaki, Koichi; Liu, Yan; Taniguchi, Masanobu
    • Organizer
      Waseda International Symposium
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Long-memory log-linear zero-inflated generalized Poisson autoregression for COVID-19 pandemic modeling2022

    • Author(s)
      Xu, Xiaofei; Chen, Ying; Liu, Yan; Goto, Yuichi; Taniguchi, Masanobu
    • Organizer
      Waseda International Symposium
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Sparse principal component analysis for high-dimensional stationary time series2022

    • Author(s)
      Fujimori, Kou; Goto, Yuichi; Liu, Yan; Taniguchi, Masanobu
    • Organizer
      多様な高次元モデルの理論と方法論:最前線の動向
    • Related Report
      2021 Research-status Report
  • [Presentation] Detection of relevant change in frequency domain2021

    • Author(s)
      Liu, Yan; Goto, Yuichi, Taniguchi, Masanobu
    • Organizer
      日本数学会
    • Related Report
      2021 Research-status Report
  • [Presentation] Homogeneity tests for one-way models with dependent errors2021

    • Author(s)
      後藤 佑一、新垣 航一、劉 言、谷口 正信
    • Organizer
      日本数学会
    • Related Report
      2021 Research-status Report
  • [Presentation] Higher order asymptotics of minimax estimators for time series2021

    • Author(s)
      Xu, Xiaofei; Liu, Yan; Taniguchi, Masanobu
    • Organizer
      日本数学会
    • Related Report
      2021 Research-status Report
  • [Presentation] 予測誤差に基づく時系列の統計的推測とその応用2021

    • Author(s)
      劉 言
    • Organizer
      統計関連学会連合大会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 高次元・定常な時系列に対するスパース主成分分析2021

    • Author(s)
      藤森 洸、後藤 佑一、劉 言、谷口 正信
    • Organizer
      統計関連学会連合大会
    • Related Report
      2021 Research-status Report
  • [Presentation] 周波数領域における顕要変化の検出2021

    • Author(s)
      劉 言、後藤 佑一、谷口 正信
    • Organizer
      統計関連学会連合大会
    • Related Report
      2021 Research-status Report
  • [Presentation] 従属誤差を持つ一元配置モデルにおける均一性の検定2021

    • Author(s)
      後藤 佑一、新垣 航一、劉 言、谷口 正信
    • Organizer
      統計関連学会連合大会
    • Related Report
      2021 Research-status Report
  • [Presentation] 時系列の高次漸近論を考慮したミニマックス推定2021

    • Author(s)
      Xu, Xiaofei; Liu, Yan; Taniguchi, Masanobu
    • Organizer
      統計関連学会連合大会
    • Related Report
      2021 Research-status Report
  • [Presentation] 感性工学活用による燃料電池研究価値向上研究2021

    • Author(s)
      青山 祐介、各務 文雄、柳沼 基、塩見 岳史、劉 言、谷口 正信
    • Organizer
      日本感性工学会大会
    • Related Report
      2021 Research-status Report
  • [Presentation] Statistical Inference for Persistence Landscapes of the Granger Causality2021

    • Author(s)
      Liu Yan
    • Organizer
      Waseda International Symposium
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Hypothesis testing for local Granger causality2021

    • Author(s)
      劉 言、谷口 正信、Ombao Hernando
    • Organizer
      日本数学会
    • Related Report
      2020 Research-status Report
  • [Presentation] Statistical and Topological Inference of the Granger Causality2021

    • Author(s)
      Liu Yan
    • Organizer
      Waseda Cherry Blossom Workshop
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] パーシステントホモロジーによるグレンジャー因果性の可視化2020

    • Author(s)
      劉 言、木村 晃敏、谷口 正信、Ombao Hernando
    • Organizer
      統計関連学会連合大会
    • Related Report
      2020 Research-status Report
  • [Presentation] Topological analysis for local Granger causality2020

    • Author(s)
      劉 言、木村 晃敏、谷口 正信、Ombao Hernando
    • Organizer
      日本数学会
    • Related Report
      2020 Research-status Report
  • [Book] Research Papers in Statistical Inference for Time Series and Related Models2023

    • Author(s)
      Liu Yan、Hirukawa Junichi、Kakizawa Yoshihide
    • Total Pages
      607
    • Publisher
      Springer
    • Related Report
      2022 Annual Research Report
  • [Book] Foundations of Statistics A2021

    • Author(s)
      Liu Yan
    • Total Pages
      174
    • Publisher
      DesignEgg Co.,Ltd.
    • Related Report
      2020 Research-status Report
  • [Book] Foundations of Statistics B2021

    • Author(s)
      Liu Yan
    • Total Pages
      150
    • Publisher
      DesignEgg Co.,Ltd.
    • Related Report
      2020 Research-status Report
  • [Funded Workshop] Waseda Seminar on High-dimensional Statistics I2022

    • Related Report
      2022 Annual Research Report
  • [Funded Workshop] Waseda Seminar on Statistics2022

    • Related Report
      2022 Annual Research Report
  • [Funded Workshop] Waseda Seminar on High-dimensional Statistics II2022

    • Related Report
      2022 Annual Research Report
  • [Funded Workshop] Waseda mini-workshop "Recent development on time series analysis and related topics"2022

    • Related Report
      2022 Annual Research Report
  • [Funded Workshop] Waseda Seminar on High-dimensional Statistics III2022

    • Related Report
      2022 Annual Research Report

URL: 

Published: 2020-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi