• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Risk prediction modeling by accounting for interaction between health-related data and whole-genome information

Research Project

Project/Area Number 20K11723
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60030:Statistical science-related
Research InstitutionNagasaki University

Principal Investigator

Ueki Masao  長崎大学, 情報データ科学部, 教授 (10515860)

Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2022: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords予測モデル / 遺伝子x環境相互作用 / 高次元回帰モデル / 健康医療データ / ゲノムデータ / リスク予測モデリング / 遺伝的予測 / 遺伝子×環境相互作用 / 環境因子
Outline of Research at the Start

現状の全ゲノム情報を用いた予測モデルの予測精度は,多くのありふれた疾患において実用水準に達していない.近年大量に収集されている生活習慣や健康診断情報などの様々な健康医療データを,全ゲノム情報と組み合わせて用いることで,現行モデルの予測精度を向上できる可能性がある.しばしば,ゲノム情報と非ゲノム情報は加法モデルで同列に扱われるが,本研究では,両者の相互作用を考慮した非加法モデルによってリスク予測の高精度化を目指す.

Outline of Final Research Achievements

Combining whole-genome data with various health-related data, we developed statistical models and algorithms for risk prediction. In particular, we developed prediction model that incorporates interactions between genome-data and health-related data. Based on the STMGP (smooth-threshold multivariate genetic prediction), a sparse modeling method, we evaluated the prediction model combing whole-genome data and other factors such as sex and age on real dataset. Subsequently, we developed a prediction model that incorporates whole-genome data, non-genomic data (sex, age, etc), and their interactions, which is a non-additive gene-environment interaction based prediction model.

Academic Significance and Societal Importance of the Research Achievements

近年、ゲノムデータを含め、高次元な健康医療データが取得されているが、十分な疾患リスク予測精度が得られないケースが多くある。本研究において、現行の単純な加法モデルを発展させることで、全ゲノム情報と多様な健康医療データの相互作用を考慮できる非線形リスク予測モデルを開発した。これまでゲノムデータに対する予測モデルにおいて非ゲノムデータとの相互作用を考慮できる予測モデルは限られていたが、本手法を用いることで、ゲノムデータと健康医療データの相互作用が存在する場合の予測精度向上に貢献するものと考える。

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (12 results)

All 2022 2021 2020

All Journal Article (7 results) (of which Peer Reviewed: 7 results,  Open Access: 4 results) Presentation (5 results) (of which Int'l Joint Research: 3 results,  Invited: 2 results)

  • [Journal Article] Beta-negative binomial nonlinear spatio-temporal random effects modeling of COVID-19 case counts in Japan2022

    • Author(s)
      Ueki M
    • Journal Title

      Journal of Applied Statistics

      Volume: - Issue: 7 Pages: 1650-1663

    • DOI

      10.1080/02664763.2022.2064439

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Testing conditional mean through regression model sequence using Yanai’s generalized coefficient of determination2021

    • Author(s)
      Ueki M
    • Journal Title

      Computational Statistics & Data Analysis

      Volume: 158 Pages: 107168-107168

    • DOI

      10.1016/j.csda.2021.107168

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Smooth-threshold multivariate genetic prediction incorporating gene-environment interactions2021

    • Author(s)
      Ueki M, Tamiya G
    • Journal Title

      G3 Genes|Genomes|Genetics

      Volume: 11 Issue: 12

    • DOI

      10.1093/g3journal/jkab278

    • NAID

      120007190861

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Improved metabolomic data-based prediction of depressive symptoms using nonlinear machine learning with feature selection2020

    • Author(s)
      Takahashi, Y., Ueki, M., Yamada, M. et al.
    • Journal Title

      Translational Psychiatry

      Volume: 10 Issue: 1 Pages: 157-157

    • DOI

      10.1038/s41398-020-0831-9

    • URL

      https://pure.teikyo.jp/en/publications/4f404eb5-0d20-4e87-84b8-13806fe1dc9c

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Clustering by phenotype and genome-wide association study in autism2020

    • Author(s)
      Narita Akira, Nagai Masato, Mizuno Satoshi, Ogishima Soichi et al.
    • Journal Title

      Translational Psychiatry

      Volume: 10 Issue: 1 Pages: 290-290

    • DOI

      10.1038/s41398-020-00951-x

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Machine learning for effectively avoiding overfitting is a crucial strategy for the genetic prediction of polygenic psychiatric phenotypes2020

    • Author(s)
      Takahashi, Y., Ueki, M., Tamiya, G. et al.
    • Journal Title

      Translational Psychiatry

      Volume: 10 Issue: 1 Pages: 294-294

    • DOI

      10.1038/s41398-020-00957-5

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Artificial intelligence powered statistical genetics in biobanks2020

    • Author(s)
      Narita Akira、Ueki Masao、Tamiya Gen
    • Journal Title

      Journal of Human Genetics

      Volume: 66 Issue: 1 Pages: 61-65

    • DOI

      10.1038/s10038-020-0822-y

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] Techniques for disease prediction modeling using health-related data2022

    • Author(s)
      Ueki M
    • Organizer
      2022 JOINT SYMPOSIUM Co-hosted by SixERS & UST
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] ベータ負の二項分布を用いた新型コロナウイルス感染者数の時空間データモデリング2022

    • Author(s)
      植木優夫
    • Organizer
      統計関連学会連合大会
    • Related Report
      2022 Annual Research Report
  • [Presentation] Data-adaptive groupwise test for genomic studies via the Yanai's generalized coefficient of determination2021

    • Author(s)
      Ueki M
    • Organizer
      Bernoulli-IMS 10th World Congress in Probability and Statistics
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] データ科学による遺伝統計解析2021

    • Author(s)
      植木優夫
    • Organizer
      脳病態数理・データ科学セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Sparse genetic prediction modeling incorporating gene-environment interactions2020

    • Author(s)
      Masao Ueki, Gen Tamiya
    • Organizer
      30th International Biometric Conference (IBC2020)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2020-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi