• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Network bandwidth reservation method combining machine learning and linear programming

Research Project

Project/Area Number 20K11798
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60060:Information network-related
Research InstitutionNihon University

Principal Investigator

GENDA Kouichi  日本大学, 工学部, 教授 (00564105)

Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
KeywordsSDN / 帯域予約 / 機械学習 / 線形計画法 / 誤判定 / 数理計画法 / ネットワーク / SDN / 予約サービス
Outline of Research at the Start

今後普及が期待される新たなネットワークサービスである「ネットワーク帯域予約サービス」に着目し、リアルタイムかつ高い予約受付率を可能とする受付判定方法を明らかにする。申請者が先駆けて検討している機械学習を活用した受付判定方法を基本に、機械学習の大きな課題である「一定量存在する誤判定」の対策等に向けて、【研究1】コア技術である機械学習による受付判定の特性向上と、【研究2】社会実装を見据えた受付判定システム構成の検討を進める。

Outline of Final Research Achievements

Network bandwidth reservation is a representative service that utilizes the advantages of software-defined networks in which users directly reserve network resources on an on-demand basis. A bandwidth reservation method is proposed here to meet the requirements, instantaneous response to requests and high request acceptance ratio, by using machine learning (ML), particularly for unpredictable bandwidth demands in which the use time is indicated strictly. Simulation results indicated that the proposed method adopting a multi-layered neural network can achieve a high accuracy ratio within a 10% difference compared to the ideal solution. In addition, the bandwidth-reservation system combining the request judgment by ML and the network resource allocation by linear programing was proposed, where they are executed in a pipeline manner. We demonstrated that the proposed system can achieve adequate network resource allocation within a 10% difference compared to the ideal solution.

Academic Significance and Societal Importance of the Research Achievements

SDNの利点を活用した新たなサービスとして期待されるネットワークのオンデマンドサービスの1つであるネットワーク帯域予約サービスの実現に向けて、速やかな受付判定と高いリクエスト受付率を両立できる新たな予約受付判定方法を提案した。
本検討では、今後需要の高まりが期待されるネットワーク領域でのオンデマンドサービスを技術面から進展させたとともに、ネットワークと機械学習を融合した新たな活用法を提示した。

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (3 results)

All 2022 2021

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (2 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Network bandwidth reservation method combining machine learning and linear programming2021

    • Author(s)
      K. Genda
    • Journal Title

      IEICE Communications Express

      Volume: -

    • NAID

      130008047236

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] 機械学習を用いたオンデマンド帯域予約判定精度の改善2022

    • Author(s)
      源田浩一
    • Organizer
      電子情報通信学会ソサイエティ大会
    • Related Report
      2022 Annual Research Report
  • [Presentation] On-demand network bandwidth reservation combining machine learning and linear programming2021

    • Author(s)
      K. Genda
    • Organizer
      IEEE/IFIP International Conference on Network and Service Management
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2020-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi