• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

3D Positioning with IMU in various environments

Research Project

Project/Area Number 20K11891
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 61010:Perceptual information processing-related
Research InstitutionNara Institute of Science and Technology (2021-2022)
Kyushu University (2020)

Principal Investigator

Uchiyama Hideaki  奈良先端科学技術大学院大学, 先端科学技術研究科, 准教授 (90735804)

Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
KeywordsIMU / ディープラーニング / オドメトリ / キャリブレーション / 運動学 / カルマンフィルタ / センサーフュージョン / odometry / deep learning / 測位 / ニューラルネットワーク
Outline of Research at the Start

IMUを用いた任意移動体の3次元運動を計測可能な立体測位技術を確立する.本研究では,両者をニューラルネットワーク(NN)によって記述した学習に基づく手法を構築し,カメラを用いた立体測位を真値として導入したNNの学習手法を提案する.さらに,IMUセンサ特性を学習させることで,IMUの違いに対する頑健性を向上させる.これにより,測位運用時には,学習したNNを用いてIMUのみから任意環境下での立体測位を実現する.実環境で計測した実践的検証を行うことで,提案手法の汎化性能を明らかにする.

Outline of Final Research Achievements

Our objective is to develop a three-dimensional positioning method for any moving objects by using an Inertial Measurement Unit (IMU) which sensing is robust to the surrounding environment changes. The challenges are the estimation of noise and biases, as well as the incomplete determination of the gravity direction. In this work, we propose a method based on learning using a neural network (NN) to describe both noise and bias estimation and gravity direction estimation. Especially, we use camera-based positioning as ground truth for training the NN. Furthermore, we enhance the robustness against variations in IMU sensors by training the IMU sensor characteristics. During positioning inference, we can achieve three-dimensional positioning in any given environment using only the IMU through the utilization of the trained NN. We demonstrate the practical validation through measurements in real-world environments to assess the generalization performance of the proposed method.

Academic Significance and Societal Importance of the Research Achievements

本研究では,ニューラルネットワークを用いて暗または陽にIMUのセンサ特性をモデル化し,運動学を用いて移動量推定を行う手法を提案した.現在の移動量推定はカメラに基づく技術が主流である.しかし,暗所では測位できず,見えの変化のある動的環境では,測位精度が大きく低下する.そこで,周辺環境の影響を受けないデータ計測を行うIMUを用いて高精度な移動量推定を行う技術を確立した.実験では空中のみならず,水中と空中を行き来する移動においても高精度な推定を行えることを示した.IMUのみを用いて移動量推定を実現することは,計算量及び環境に対するロバスト性の高さの面でナビゲーション技術として貢献した.

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (9 results)

All 2022 2021 2020

All Journal Article (2 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (7 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Recent advances in vision-based indoor navigation: A systematic literature review2022

    • Author(s)
      Khan Dawar、Cheng Zhanglin、Uchiyama Hideaki、Ali Sikandar、Asshad Muhammad、Kiyokawa Kiyoshi
    • Journal Title

      Computers & Graphics

      Volume: 104 Pages: 24-45

    • DOI

      10.1016/j.cag.2022.03.005

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Understanding the Behavior of Data-Driven Inertial Odometry With Kinematics-Mimicking Deep Neural Network2021

    • Author(s)
      Dugne-Hennequin Quentin Arnaud、Uchiyama Hideaki、Paulo Silva Do Monte Lima Joao
    • Journal Title

      IEEE Access

      Volume: 9 Pages: 36589-36619

    • DOI

      10.1109/access.2021.3062817

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Performance Analysis of Smartphone based Global 3D Body Tracking for Gait Tracking with Foot Mounted IMU and Target-Tracking Camera2022

    • Author(s)
      Vinayak Teoh
    • Organizer
      HCGシンポジウム2022
    • Related Report
      2022 Annual Research Report
  • [Presentation] What Can Data-driven Calibration Do for 6DoF Visual-Inertial Odometry?2022

    • Author(s)
      Huakun Liu
    • Organizer
      HCGシンポジウム2022
    • Related Report
      2022 Annual Research Report
  • [Presentation] Nursing activity recognition based on Exploratory Data Analysis2022

    • Author(s)
      篠原 陸玖
    • Organizer
      HCGシンポジウム2022
    • Related Report
      2022 Annual Research Report
  • [Presentation] What Can Data-driven Calibration Do for 6DOF Inertial Odometry?2022

    • Author(s)
      Liu Huakun
    • Organizer
      情報処理学会 第75回ユビキタスコンピューティングシステム (UBI) 研究発表会
    • Related Report
      2022 Annual Research Report
  • [Presentation] A Classification Technique based on Exploratory Data Analysis for Activity Recognition2022

    • Author(s)
      Riku Shinohara
    • Organizer
      4th International Conference on Activity and Behavior Computing
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] IMUを用いた6自由度水中オドメトリシステムの基礎検討2022

    • Author(s)
      内山英昭
    • Organizer
      第73回ユビキタスコンピューティングシステム合同研究発表会
    • Related Report
      2021 Research-status Report
  • [Presentation] ニューラルネットワークを用いたIMUに基づくXDRの高精度化に向けた初期検討2020

    • Author(s)
      内山英昭
    • Organizer
      HCGシンポジウム2020
    • Related Report
      2020 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi