• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Evolutionary knowledge discovery to create explainable knowledge from large data sets

Research Project

Project/Area Number 20K11964
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionGunma University (2021-2022)
Fukuoka Nursing College (2020)

Principal Investigator

Shimada Kaoru  群馬大学, 情報学部, 教授 (20454100)

Co-Investigator(Kenkyū-buntansha) 荒平 高章  九州情報大学, 経営情報学部, 准教授 (30706958)
Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords知識発見 / データマイニング / 知識創出 / 進化計算 / アイテム集合 / 説明可能性 / 進化論的計算手法
Outline of Research at the Start

大規模データから個別の事例の特徴を最大限に説明すると考えられる知識を従来のモデル構築の過程を経ずに発見する局所的な知識発見方法を開発する。また、発見された局所的な知識集合体から進化計算を応用した自己展開型の知識発見によって大規模データからの大域的な知識創出方法を開発する。本研究課題における知識の表現はすべて説明可能であるものとし、現在のAI技術の最大の課題とされる説明可能なAIの一つの在り方を提案する。

Outline of Final Research Achievements

In this study, we proposed a local knowledge discovery method to discover knowledge from large-scale data that is thought to best explain the characteristics of individual cases without going through the process of conventional model building. We defined an itemset with statistical characteristics as an explanatory local knowledge representation, and evaluated their properties, reliability, and reproducibility in implementing the discovery. We also developed a method for global knowledge creation from the local knowledge set that was discovered, and developed clustering techniques that are different from conventional methods, and techniques that attempt to express global knowledge by combining small groups of statistical characteristics. It was found to have the potential for knowledge creation from explanatory and individual characteristics using publicly available medical data and other data.

Academic Significance and Societal Importance of the Research Achievements

説明可能な局所的知識表現として提案した統計的な特徴を背景として持つアイテム集合(ItemSB:Itemsets with Statistically Distinctive Backgrounds)はデータ分析におけるアイテム集合ベース手法と統計学的方法を橋渡しして扱うことができるため、大規模データの分析に統計学的手法を効果的に導入可能とする技術と位置付けられる。大規模データの分析を統計的な背景をもつ小集団の組合せで扱おうとする新たなクラスタリング手法や、小集団にみられる統計的な特徴の連結により大域的な知識を扱おうとする方法の開発などの実用的で発展性のある独自方式による技術開発である。

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (9 results)

All 2022 2021

All Journal Article (4 results) (of which Peer Reviewed: 4 results) Presentation (5 results) (of which Int'l Joint Research: 3 results)

  • [Journal Article] ItemSB: Itemsets with Statistically Distinctive Backgrounds Discovered by Evolutionary Method2022

    • Author(s)
      Shimada Kaoru、Arahira Takaaki、Matsuno Shogo
    • Journal Title

      International Journal of Semantic Computing

      Volume: 16 Issue: 03 Pages: 357-378

    • DOI

      10.1142/s1793351x22420028

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Evolutionary operation setting for outcome accumulation type evolutionary rule discovery method2022

    • Author(s)
      Matsuno Shogo、Shimada Kaoru
    • Journal Title

      Proc. of the Genetic and Evolutionary Computation Conference (ACM GECCO'22) Companion

      Volume: Companion Pages: 451-454

    • DOI

      10.1145/3520304.3528974

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Evolutionary Method for Two-dimensional Associative Local Distribution Rule Mining2021

    • Author(s)
      Shimada Kaoru、Arahira Takaaki、Matsuno Shogo
    • Journal Title

      Proc. of The 33rd IEEE International Conference on Tools with Artificial Intelligence

      Volume: ー Pages: 1018-1025

    • DOI

      10.1109/ictai52525.2021.00163

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Evolutionary Method to Discover Itemsets with Statistically Distinctive Backgrounds2021

    • Author(s)
      Kaoru Shimada, Takaaki Arahira, Shogo Matsuno
    • Journal Title

      Proc. of 2021 IEEE Fourth International Conference on Artificial Intelligence and Knowledge Engineering

      Volume: ー Pages: 113-120

    • DOI

      10.1109/aike52691.2021.00024

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Presentation] Evolutionary Operation Setting for Outcome Accumulation Type Evolutionary Rule Discovery Method2022

    • Author(s)
      Shogo Matsuno, Kaoru Shimada
    • Organizer
      Genetic and Evolutionary Computation Conference (ACM GECCO'22)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 統計的に特徴的な背景を持つアイテムセットを発見するための進化計算方法2022

    • Author(s)
      嶋田香, 松野省吾,荒平高章
    • Organizer
      2022年度 人工知能学会全国大会(第36回)
    • Related Report
      2022 Annual Research Report
  • [Presentation] 2つの連続変数間の統計的特性を背景とするアイテム集合2022

    • Author(s)
      嶋田香
    • Organizer
      2022年度統計関連学会連合大会
    • Related Report
      2022 Annual Research Report
  • [Presentation] Evolutionary Method for Two-dimensional Associative Local Distribution Rule Mining2021

    • Author(s)
      Kaoru Shimada, Takaaki Arahira, Shogo Matsuno
    • Organizer
      The 33rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Evolutionary Method to Discover Itemsets with Statistically Distinctive Backgrounds2021

    • Author(s)
      Kaoru Shimada, Takaaki Arahira, Shogo Matsuno
    • Organizer
      2021 IEEE Fourth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2020-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi