Project/Area Number |
20K11970
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 61040:Soft computing-related
|
Research Institution | Osaka University |
Principal Investigator |
Tatsumi Keiji 大阪大学, 大学院工学研究科, 准教授 (30304017)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | 大域的最適化 / 準ニュートン法 / カオス / メタヒューリスティック解法 / 座標変換に対する不変性 / 大域的最適化問題 / 多点探索法 / 汎化性能 / 進化的手法 |
Outline of Research at the Start |
本研究では,局所解を多数持つ連続的大域的最適化問題を対象とし,(i) 数理的な手法である準ニュートン法を複数探索点の情報を有効に用いる多点型に拡張し,汎化性向上のために微分情報の差分近似を導入 (ii) 座標表現に関して不変な進化的手法を提案,さらに (iii) 2 種類の手法を融合した多点探索法の開発,さらに探索の多様性を維持するための摂動型カオス力学系の付加を提案する.
|
Outline of Final Research Achievements |
For continuous global optimization problems with many local solutions, (i) we have extended the existing quasi-Newton method for single-point search, which searches for solutions by estimating the shape of the objective function based on only the differential information at the past position of the search point, and have proposed a method of sharing differential information among multiple search points within a certain distance to estimate the shape, and have verified the advantages of the proposed methods. (ii) Furthermore, we have proposed a method for maintaining the invariance to transformations while maintaining the solvability of the existing perturbation-based chaotic particle swarm optimization and the grey wolf optimizer, and performing dependent search with respect to coordinate transformations. In addition, we have combined these methods to develop an evolutionary method with higher solvability, which has been evaluated through numerical experiments.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の成果である,(1) 多点探索法での準ニュートン法の拡張・2次導関数情報共有による逆ヘッセ行列更新法の提案と,それによる多点探索での効率的な求解が可能であることを示した点や,(2)多点探索法を問題表現座標に依存せず,不変で効率的な探索により,汎用性を向上する方法やGWO,PSOを組み合せることでより効率的な求解方法を示した点は,ビッグデータなど大量のデータのもとでデータ処理が不可欠となり,そこでの最適化が必須となっている「大域的最適化」「機械学習」や「分散最適化」といった分野での汎用性・求解効率向上に大きく貢献できたと考えている.
|