Project/Area Number |
20K12071
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 62010:Life, health and medical informatics-related
|
Research Institution | National Cancer Center Japan |
Principal Investigator |
Kato Mamoru 国立研究開発法人国立がん研究センター, 研究所, 分野長 (40391916)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | がん細胞進化 / 計算機シミュレーション / 個別化医療 / がんゲノム医療 / がん細胞 / シミュレーション / がんのクローン進化 / 腫瘍内多様性 / 個人化医療予測 |
Outline of Research at the Start |
がん細胞のクローン進化は腫瘍内多様性を生み、患者の治療効果や予後に重大な影響を与える。研究代表者は、がん関連遺伝子の観測値データと6つのがんホールマークとを結び付けてがん細胞進化を模す、計算機シミュレーション・モデルを開発した。本研究ではプログラムを発展させ、患者のNGS由来VAF(変異のがん細胞集団頻度)データへの本格的な適用を実施し、がん細胞進化における具体的な遺伝子機能の役割を解明する。最終的には、どの遺伝子を遮断すれば、がん細胞数=10の12乗(死に至る細胞概数)に達するまでの時間を遅延できるかという、計算機シミュレーションによる個人化医療予測を可能にすることを目標とする。
|
Outline of Final Research Achievements |
We performed cancer-cell evolutionary simulations on VAF (variant allele frequency) data from a 73-year-old male colorectal cancer patient in the TCGA (Cancer Genome Atlas) database, and predicted that blocking APC, KRAS, and PIK3CA aberrations will have no effect on cancer-cell growth, but, when blocking TP53 aberrations, the metastatic cells will not grow (Nagornov and Kato, 2020). Then, we changed the data representation from cell-based to clone-based and achieved great computational speed-up (Nagornov, Nishino, and Kato, 2020). In addition to point mutations, we implemented a model that incorporates CNAs (copy number alterations) and tumor purity (manuscript in preparation).
|
Academic Significance and Societal Importance of the Research Achievements |
73歳大腸がん男性患者の実データを例に、遺伝子変異をNGS(次世代シークエンサー)で測定し、腫瘍内不均一性を考慮した数理シミュレーション・モデルを使って、個別化医療を実行する原理的可能性を、世界で初めて示した。どの遺伝子を遮断すればがん細胞が増殖しないか、数値シミュレーションで予測できる。これはすなわち、どの分子標的薬を使えば効果が見込めるかの、シミュレーションを用いた全く新しいタイプの個人化医療である。
|