• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Utilization of machine learning for radiation graft polymerization and and construction of polymerization yield prediction model

Research Project

Project/Area Number 20K12488
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 80040:Quantum beam science-related
Research InstitutionNational Institutes for Quantum Science and Technology

Principal Investigator

Ueki Yuji  国立研究開発法人量子科学技術研究開発機構, 高崎量子応用研究所 先端機能材料研究部, 併任 (50446415)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2023: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords量子ビーム / 放射線グラフト重合 / 機械学習 / 重合予測 / モデル式
Outline of Research at the Start

高分子材料開発において、国際的に高い競争力を今後も牽引するためには、従前の「経験と勘」といった非効率的な手法を刷新し、開発期間の短縮化、開発費用の低コスト化と同時に社会的要請に対する高い即応力を併せ持つ合理的な材料創製手法の開発が急務である。本研究は、高分子改質手法である放射線グラフト重合技術に統計解析手法などの機械学習を融合することにより、基材や薬品の分子情報を基に重合収率を高精度に予測可能な解析手法を開発し、開発期間短縮とコスト削減に資する基盤技術の確立を目指す。

Outline of Final Research Achievements

Conventional polymer material development relies on inefficient trial-and-error experiments based on researcher’s “experience and intuition”. As a result, the development of new polymers requires an enormous amount of time and high costs. In this research, we have succeeded in creating an AI model that can instantly predict the grafting yields based solely on the physical and chemical properties of the monomers, by integrating machine learning approach in the conventional radiation grafting process. Additionally, the creating AI model can quantify the importance of various explanatory variables on the grafting yield. Analysis of the AI model revealed that the monomer’s “polarizability”, which represents a miscibility indicator of the monomer to the trunk polymer, and the “O2 NMR shift”, which represents a diffusivity indicator of the monomer into the trunk polymer, were important explanatory variables for predicting the grafting yield.

Academic Significance and Societal Importance of the Research Achievements

本成果は、機能性高分子材料の創製手法のひとつである放射線グラフト重合における機械学習利用の有用性を示したものである。本成果は、低コストで迅速性のある効率的な高分子材料開発に資する基礎技術であり、企業競争力向上に貢献可能であることから、その社会的意義は大きい。また、本成果の応用・発展は、高分子材料開発分野における新たな科学的知見の発見や革新的高分子材料の創出に繋がる可能性を有していることから、その学術的意義も大きい。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (8 results)

All 2023 2022 2021 Other

All Journal Article (4 results) (of which Peer Reviewed: 3 results,  Open Access: 2 results) Presentation (3 results) (of which Invited: 1 results) Remarks (1 results)

  • [Journal Article] Prediction of grafting yield by using machine learning2023

    • Author(s)
      Yuji Ueki, Noriaki Seko, Yasunari Maekawa
    • Journal Title

      QST Takasaki Annual Report 2021

      Volume: QST-M-39 Pages: 51-51

    • Related Report
      2022 Research-status Report
    • Open Access
  • [Journal Article] 機械学習を活用した放射線グラフト重合率の予測2022

    • Author(s)
      植木悠二, 瀬古典明, 前川康成
    • Journal Title

      放射線化学

      Volume: 114 Pages: 45-54

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Machine learning approach for prediction of the grafting yield in radiation-induced graft polymerization2021

    • Author(s)
      Ueki Yuji, Seko Noriaki, Maekawa Yasunari
    • Journal Title

      Applied Materials Today

      Volume: 25 Pages: 101158-101158

    • DOI

      10.1016/j.apmt.2021.101158

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Prediction of grafting yield by multiple linear regression analysis2021

    • Author(s)
      Ueki Yuji, Seko Noriaki, Maekawa Yasunari
    • Journal Title

      QST Takasaki Annual Report 2020

      Volume: QST-M-33 Pages: 50-50

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 機械学習による放射線グラフト重合収率予測2022

    • Author(s)
      植木悠二
    • Organizer
      QST高崎サイエンスフェスタ2022
    • Related Report
      2022 Research-status Report
  • [Presentation] Prediction of radiation-induced graft polymerization yield by using machine learning2022

    • Author(s)
      Yuji Ueki
    • Organizer
      Joint Symposium of S-Membrane Project and F-Material Project
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 人工知能(AI)でグラフト重合反応率が予測可能に2021

    • Author(s)
      植木悠二
    • Organizer
      QST高崎サイエンスフェスタ2021
    • Related Report
      2021 Research-status Report
  • [Remarks] どの原料モノマーを使えば、どんな高分子材料を作れるか分かる!?(プレスリリース)

    • URL

      https://www.qst.go.jp/site/press/20210929-1.html

    • Related Report
      2021 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi