Project/Area Number |
20K12757
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 90150:Medical assistive technology-related
|
Research Institution | Akita Prefectural University |
Principal Investigator |
Abe Koji 秋田県立大学, システム科学技術学部, 助教 (50315652)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2021: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | 異常検知システム / 音響特徴量抽出 / 自動セグメンテーション / ニューラルネットワーク / 見守りシステム / 異常検知 / オートセグメンテーション / GAN / DAGMM / 深層学習 / 時間長重み |
Outline of Research at the Start |
現代社会では,一人暮らしの割合が増加しており,一例として,老後は十分な介護を受けることが出来ずに孤独死を迎えるなどの問題を抱えている.これらの問題を解決するためには,ある意味生存確認を目的とした定期的な訪問や,近隣住民の相互扶助などが求められる.これらの対策は継続的で人的なコストを要求する.そこで本研究では,音信号に着目し,ユーザーのプライバシーに配慮した上で,ほぼリアルタイムで機械的に生活の異常を検知するシステムを構築する.これによって,低コストで機械的な監視を実現できるようになる.
|
Outline of Final Research Achievements |
The target application of this research is monitoring the daily lives of elderly people living alone. Therefore, we conducted research on a system that enables appropriate anomaly detection while minimizing privacy violations. First, we proposed a system that appropriately divides sound signals using acoustic features as clues so that they contain one acoustic event. For sound segments using this division system, a previous anomaly detection system based on GMM and three anomaly detection systems that apply neural networks were constructed. The performance of these proposed systems was evaluated using test sounds in which an abnormal signal was embedded in a sound signal recorded in a real space. The experimental results showed that automatic segmentation contributed to improving anomaly detection performance. In addition, a system that automated the extraction of acoustic features (based on DAGMM) showed the highest performance.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究成果は,音信号を対象とした異常検知の性能向上について一定の寄与をしたと言える.各種物理センサを用いて独居老人を対象とした見守りシステムを構築する上で,プライバシーの侵害は大きな問題を引き起こす可能性がある.音信号を用いたシステムはカメラをはじめとする視覚的なモニタリングよりもプライバシー侵害が少なく,かつ死角が発生しづらいという利点がある.そのため複数のセンサを用いた総合的な見守りシステムにおいて一番初めのトリガ的役割を果たすことができる.このような運用の場合,誤検知を恐れるよりも異常検知漏れが問題となるが,本提案システムでは,設定により再現率を1に出来ており検知漏れを完全に回避できた.
|