• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of uniform and high-dimensional Gaussian approximation for stochastic processes and their applications to errors-in-variable models

Research Project

Project/Area Number 20K13468
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 07030:Economic statistics-related
Research InstitutionThe University of Tokyo (2023)
Yokohama National University (2022)
Tokyo Institute of Technology (2020-2021)

Principal Investigator

Kurisu Daisuke  東京大学, 空間情報科学研究センター, 准教授 (70825835)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords空間データ / 時空間データ / 関数データ / ノンパラメトリック回帰 / 分位点回帰 / 変数誤差モデル / 高次元中心極限定理 / ブートストラップ法 / 高次元データ / 極値統計学 / 時系列解析 / 中間的正規近似 / 局所定常空間過程 / レヴィ駆動型確率場 / 非定常空間データ / サブサンプリング / ブートストラップ / 確率過程 / 経験過程 / 高次元統計 / 確率場
Outline of Research at the Start

本研究では以下の3つの研究に取り組む予定である。
①金融資産価格のモデルや損害保険のリスク分析において基礎となる統計モデルとして知られる、レヴィ駆動型確率過程と呼ばれるモデルの特徴量のノンパラメトリックな統計的推測手法の開発。
②計量経済学の分野で利用される変数誤差モデルに関する統計的推測理論の開発とその実データへの応用。
③気温や降水量、地価といった空間的な情報をもつ環境、経済データの分析において重要な役割を果たす統計モデルである空間過程に対する新たな統計分析手法の開発。
これら統計モデルの背後にある理論的な解析手法は共通する部分が多く、統一的な視点でこれらの問題の解決を目指す。

Outline of Final Research Achievements

In this research project, we worked on the following research topics: (1) Nonparametric regression for non-stationary spatial data and functional data, (2) Development of statistical inference methods for high-dimensional spatial data and spatio-temporal data, (3) Nonparametric quantile regression using extreme value theory, and (4) Development of nonparametric density estimation methods for variables observed with measurement errors. All these research outcomes have been accepted in international journals, with some parts of the results, particularly in research themes (1) and (2), published in top journals in the field of statistics. I am planning to further explore applications to related topics and tackle more advanced issues.

Academic Significance and Societal Importance of the Research Achievements

本研究課題では研究テーマとして(1)時系列データ,(2)空間データ,(3)時空間データ,(4)関数時系列データ,(5)変数誤差モデルに関するノンパラメトリックな統計分析手法の開発に取り組んだ.(1)~(5)の各テーマにおいては,研究代表者の前研究課題において得られた一連の理論解析手法が上記の各テーマにおける重要な問題に適用可能であることが予想されていた.実際,本研究課題において提案したデータ分析手法の理論解析のアプローチは各テーマで共通する部分が多く,統一的な視点でこれらの問題の解決策を与えることに成功した.

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (44 results)

All 2024 2023 2022 2021 2020 Other

All Int'l Joint Research (8 results) Journal Article (8 results) (of which Int'l Joint Research: 7 results,  Peer Reviewed: 8 results,  Open Access: 2 results) Presentation (25 results) (of which Int'l Joint Research: 14 results,  Invited: 11 results) Book (1 results) Remarks (2 results)

  • [Int'l Joint Research] Cornell University/University of Illinois (UIUC)(米国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] London School of Economics(英国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Cornell University/University of Illinois (UIUC)(米国)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] London School of Economics(英国)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] Cornell University/University of Illinois (UIUC)(米国)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] London School of Economics(英国)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] London School of Economics(英国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Cornell University/University of Illinois (UIUC)(米国)

    • Related Report
      2020 Research-status Report
  • [Journal Article] Local polynomial trend regression for spatial data on R^d2024

    • Author(s)
      Kurisu Daisuke、Yasumasa Matsuda
    • Journal Title

      Bernoulli

      Volume: -

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Subsampling inference for nonparametric extremal conditional quantiles2023

    • Author(s)
      Kurisu Daisuke、Otsu Taisuke
    • Journal Title

      Econometric Theory

      Volume: - Issue: 2 Pages: 1-15

    • DOI

      10.1017/s0266466623000336

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Gaussian Approximation and Spatially Dependent Wild Bootstrap for High-Dimensional Spatial Data2023

    • Author(s)
      Kurisu Daisuke、Kato Kengo、Shao Xiaofeng
    • Journal Title

      Journal of the American Statistical Association

      Volume: - Pages: 1-13

    • DOI

      10.1080/01621459.2023.2218578

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Nonparametric regression for locally stationary functional time series2022

    • Author(s)
      Kurisu Daisuke
    • Journal Title

      Electronic Journal of Statistics

      Volume: 16 Issue: 2 Pages: 3973-3995

    • DOI

      10.1214/22-ejs2041

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] On linearization of nonparametric deconvolution estimators for repeated measurements model2022

    • Author(s)
      Kurisu Daisuke、Otsu Taisuke
    • Journal Title

      Journal of Multivariate Analysis

      Volume: 189 Pages: 104921-104921

    • DOI

      10.1016/j.jmva.2021.104921

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Nonparametric regression for locally stationary random fields under stochastic sampling design2022

    • Author(s)
      Kurisu Daisuke
    • Journal Title

      Bernoulli

      Volume: 28 Issue: 2 Pages: 1250-1275

    • DOI

      10.3150/21-bej1385

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On the uniform convergence of deconvolution estimators from repeated measurements.2021

    • Author(s)
      Daisuke Kurisu, Taisuke OTsu
    • Journal Title

      Econometric Theory

      Volume: - Issue: 1 Pages: 172-193

    • DOI

      10.1017/s0266466620000572

    • Related Report
      2021 Research-status Report 2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Detecting factors of quadratic variation in the presence of market microstructure noise2021

    • Author(s)
      Naoto Kunitomo, Daisuke Kurisu
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: - Issue: 1 Pages: 601-641

    • DOI

      10.1007/s42081-020-00104-w

    • NAID

      210000178972

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Spatially dependent wild bootstrap for high-dimensional spatial data2024

    • Author(s)
      Daisuke Kurisu
    • Organizer
      IMS-APRM2024
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Subsampling inference for nonparametric extremal conditional quantiles2023

    • Author(s)
      Daisuke Kurisu
    • Organizer
      ICIAM2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Gaussian approximation and spatially dependent wild bootstrap for high-dimensional spatial data.2022

    • Author(s)
      Daisuke Kurisu
    • Organizer
      EcoSta2022
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Nonparametric regression for locally stationary random fields on R^d.2022

    • Author(s)
      Daisuke Kurisu
    • Organizer
      3rd Tohoku-ISM-UUlm Joint Workshop
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Adaptive deep learning for nonparametric time series regression.2022

    • Author(s)
      Daisuke Kurisu
    • Organizer
      CMStatistics2022
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Adaptive deep learning for nonlinear time series.2022

    • Author(s)
      栗栖大輔
    • Organizer
      統計関連学会連合大会
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] 深層学習による時系列データの適応的推定2022

    • Author(s)
      栗栖大輔
    • Organizer
      科研費シンポジウム「データサイエンスと周辺領域の双方向的理解への挑戦」
    • Related Report
      2022 Research-status Report
  • [Presentation] スパース制約DNNによる時系列データの適応的推定2022

    • Author(s)
      栗栖大輔
    • Organizer
      科研費シンポジウム「大規模データ解析の統計的方法論の展開」
    • Related Report
      2022 Research-status Report
  • [Presentation] 局所線形極値分位点回帰2022

    • Author(s)
      栗栖大輔
    • Organizer
      JAFEE大会
    • Related Report
      2021 Research-status Report
  • [Presentation] Spatially dependent wild bootstrap for high-dimensional spatial data2021

    • Author(s)
      Daisuke Kurisu
    • Organizer
      XV World Conference of the Spatial Econometrics Association
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Gaussian approximation and bootstrap for high-dimensional spatial data2021

    • Author(s)
      Daisuke Kurisu
    • Organizer
      63rd ISI World Statistics Congress 2021
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Wild bootstrap for high-dimensional spatial data2021

    • Author(s)
      Daisuke Kurisu
    • Organizer
      Bernoulli-IMS 10th World Congress
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] On the estimation of nonstationary functional time series2021

    • Author(s)
      Daisuke Kurisu
    • Organizer
      CSA-KSS-JSS joint international session
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On the estimation of nonstationary functional data2021

    • Author(s)
      Daisuke Kurisu
    • Organizer
      CMStatistics2021
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Spatially dependent wild bootstrap2021

    • Author(s)
      栗栖大輔
    • Organizer
      横浜国立大学国際社会科学府セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] スペクトルアプローチによる確率過程のジャンプ分析2021

    • Author(s)
      栗栖大輔
    • Organizer
      第8回 統計数理研究所 リスク解析戦略研究センター 金融シンポジウム「金融が直面する新環境への対応と方法論Ⅲ」
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 非定常な関数時系列データの統計分析2021

    • Author(s)
      栗栖大輔
    • Organizer
      シンポジウム「 多様な分野における統計科学に関する理論と方法論の革新的展開」
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] 非定常な関数時系列データの特徴量推定2021

    • Author(s)
      栗栖大輔
    • Organizer
      統計関連学会連合大会
    • Related Report
      2021 Research-status Report
  • [Presentation] Spatially dependent wild bootstrap for high-dimensional spatial data.2021

    • Author(s)
      Daisuke Kurisu
    • Organizer
      University of Alberta Statistics Seminar
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Wild bootstrap for spatio-temporal data.2020

    • Author(s)
      Daisuke Kurisu
    • Organizer
      CMStatistics2020
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] 確率場に対する高次元正規近似.2020

    • Author(s)
      栗栖大輔
    • Organizer
      慶應義塾大学,計量経済学ワークショップ
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] 点過程アプローチによる条件付き極値分位点のノンパラメトリック推定.2020

    • Author(s)
      栗栖大輔
    • Organizer
      研究集会「極値理論の工学への応用」
    • Related Report
      2020 Research-status Report
  • [Presentation] Nonparametric regression for locally stationary random fields.2020

    • Author(s)
      栗栖大輔
    • Organizer
      統計関連学会連合大会
    • Related Report
      2020 Research-status Report
  • [Presentation] Bootstrap for spatio-temporal data.2020

    • Author(s)
      栗栖大輔
    • Organizer
      東京大学,応用統計ワークショップ
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Inference on extremal conditional quantiles.2020

    • Author(s)
      栗栖大輔
    • Organizer
      東北大学,Data Science Workshop
    • Related Report
      2020 Research-status Report
    • Invited
  • [Book] 極値現象の統計分析:裾の重い分布のモデリング2021

    • Author(s)
      国友 直人,栗栖 大輔
    • Total Pages
      413
    • Publisher
      朝倉書店
    • ISBN
      9784254122565
    • Related Report
      2020 Research-status Report
  • [Remarks] 研究者代表者HP

    • URL

      https://sites.google.com/site/daisukekurisu/home

    • Related Report
      2023 Annual Research Report
  • [Remarks] 研究代表者ホームページ

    • URL

      https://sites.google.com/site/daisukekurisu/home

    • Related Report
      2022 Research-status Report 2021 Research-status Report 2020 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi