Project/Area Number |
20K14291
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 11010:Algebra-related
|
Research Institution | Yamaguchi University |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
|
Keywords | 準傾対象 / 変異 / 傾加群 / (準)傾対象 / 三角圏 |
Outline of Research at the Start |
本研究では、準傾対象の変異理論の観点から三角圏の研究を行う。特に、変異が良い振る舞いをする準傾離散型の多元環のクラスに限定し研究を行う。近年盛んに研究されている前射影的多元環やgentle多元環の場合にいつ準傾離散型になるのかを調べる。さらに、準傾離散型の多元環に対して、準傾対象の中から傾対象を取り出すためのアルゴリズムの構築を目指す。
|
Outline of Final Research Achievements |
It is known that silting mutation in triangulated categories and tilting mutation in self-injective algebras have similar properties. In this research, we provided a unified framework for treating these mutations. As an application, we showed that silting-discreteness and tilting-discreteness coincide for weakly symmetric algebras, which is a special class of self-injective algebras. However, this does not necessarily hold for self-injective algebras. Indeed, we gave two concrete examples. We extended silting objects and their mutation in triangulated categories to extriangulated categories.
|
Academic Significance and Societal Importance of the Research Achievements |
変異理論は多元環の表現論で近年盛んに研究されている。変異理論の観点から準傾離散型の多元環と傾離散型の自己移入多元環という二つのクラスが重要である。本研究では、これら二つのクラスを統一的に扱う方法を与えた。さらには、傾離散型だが準傾離散型ではない自己移入多元環の例を与え、変異理論の発展に多少の貢献をしたといえる。 また、三角圏と完全圏の共通の一般化であるextriangulated圏に対して、準傾対象の概念を導入し、その性質を調べた。この概念は多元環の表現論の基本的な対象である三角圏の準傾対象と加群圏の傾加群を具体例として含むため今後の応用が期待される。
|