• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

K3 surfaces and Calabi-Yau varieties from a inseparable viewpoint

Research Project

Project/Area Number 20K14296
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11010:Algebra-related
Research InstitutionTokyo University of Science

Principal Investigator

松本 雄也  東京理科大学, 創域理工学部数理科学科, 講師 (50773628)

Project Period (FY) 2020-04-01 – 2025-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2023: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2022: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2021: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2020: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
KeywordsK3曲面 / 商特異点 / 群スキーム / 正標数 / アーベル曲面 / Kummer曲面 / 特異点 / Calabi-Yau多様体 / 代数幾何学
Outline of Research at the Start

正標数代数幾何の特徴の一つに,フロベニウス写像に代表される非分離的な射の存在がある.本研究では Calabi-Yau 多様体に関係する非分離的射に注目し,
(I) Calabi-Yau 多様体からの,または Calabi-Yau 多様体への純非分離的な射の分類・構成,
(II) Calabi-Yau 多様体との間に純非分離的な射を有する多様体の特徴づけ,
(III) このような純非分離な射の標数 0 への lift の存在・非存在,
などについて, Calabi-Yau 多様体の高さの概念を活用して調べる.

Outline of Annual Research Achievements

アーベル曲面を-1倍写像(が生成する位数2の群)で割って特異点を解消して得られる曲面をKummer曲面といい,多くの場合にK3曲面になる.また逆に,K3曲面上の16本の有理曲線がしかるべき条件を満たすとき,それらを例外曲線とするKummer曲面の構造をもつことも知られている.
Kummer曲面が標数2の超特異K3曲面になることはないのだが,標数2の超特異K3曲面上の16本の有理曲線が同様の条件を満たすとき,それらを例外曲線とする非分離2重被覆がとれることを見出し,これをKummer曲面の非分離類似だと考えた.
今年度はこの非分離Kummer曲面の方程式を決定し,被覆がアーベル曲面と同様の数値的性質をもつだけでなく可換群の構造ももつことを示した.副産物として,有理二重点の最小特異点解消への微分形式の延長に関する結果も得られた.
以上の結果をまとめて論文を投稿した.
そのほか,これまでの研究成果の論文のいくつかが受理・出版された.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

正標数のKummer曲面の非分離類似について満足のいく進展を得た.

Strategy for Future Research Activity

引き続きK3曲面やCalabi-Yau多様体への群スキーム作用や商を調べる.

Report

(4 results)
  • 2023 Research-status Report
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (19 results)

All 2023 2022 2021 2020 Other

All Int'l Joint Research (2 results) Journal Article (7 results) (of which Peer Reviewed: 7 results,  Open Access: 7 results) Presentation (10 results) (of which Int'l Joint Research: 1 results,  Invited: 10 results)

  • [Int'l Joint Research] ミュンヘン工科大学/ボン大学(ドイツ)

    • Related Report
      2023 Research-status Report
  • [Int'l Joint Research] ミュンヘン工科大学/ボン大学(ドイツ)

    • Related Report
      2021 Research-status Report
  • [Journal Article] INSEPARABLE MAPS ON Wn-VALUED LOCAL COHOMOLOGY GROUPS OF NONTAUT RATIONAL DOUBLE POINT SINGULARITIES AND THE HEIGHT OF K3 SURFACES2023

    • Author(s)
      Matsumoto Yuya
    • Journal Title

      Journal of Commutative Algebra

      Volume: 15 Issue: 3 Pages: 377-404

    • DOI

      10.1216/jca.2023.15.377

    • Related Report
      2023 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Degeneration of K3 surfaces with non-symplectic automorphisms2023

    • Author(s)
      Matsumoto Yuya
    • Journal Title

      Rendiconti del Seminario Matematico della Universita di Padova

      Volume: 150 Pages: 227-245

    • DOI

      10.4171/rsmup/123

    • Related Report
      2023 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Extendability of automorphisms of K3 surfaces2023

    • Author(s)
      Matsumoto Yuya
    • Journal Title

      Mathematical Research Letters

      Volume: 30 Issue: 3 Pages: 821-863

    • DOI

      10.4310/mrl.2023.v30.n3.a9

    • Related Report
      2023 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] μ_{p}- and α_{p}-actions on K3 surfaces in characteristic p2022

    • Author(s)
      Matsumoto Yuya
    • Journal Title

      Journal of Algebraic Geometry

      Volume: 32 Issue: 2 Pages: 271-322

    • DOI

      10.1090/jag/804

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] ON -ACTIONS ON K3 SURFACES IN POSITIVE CHARACTERISTIC2022

    • Author(s)
      MATSUMOTO YUYA
    • Journal Title

      Nagoya Mathematical Journal

      Volume: 249 Pages: 11-49

    • DOI

      10.1017/nmj.2022.20

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Canonical coverings of Enriques surfaces in characteristic 22022

    • Author(s)
      MATSUMOTO Yuya
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 74 Issue: 3 Pages: 849-872

    • DOI

      10.2969/jmsj/86318631

    • ISSN
      0025-5645, 1881-1167, 1881-2333
    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Purely inseparable coverings of rational double points in positive characteristic2022

    • Author(s)
      Matsumoto Yuya
    • Journal Title

      Journal of Singularities

      Volume: 24 Pages: 79-95

    • DOI

      10.5427/jsing.2022.24b

    • Related Report
      2022 Research-status Report 2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Kummer曲面の非分離類似2023

    • Author(s)
      松本雄也
    • Organizer
      野田代数幾何学シンポジウム2023
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] Inseparable analogue of Kummer K3 surfaces2023

    • Author(s)
      松本雄也
    • Organizer
      正標数体上の代数多様体、および連接層の導来圏に関するワークショップ
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Inseparable analogue of Kummer K3 surfaces2023

    • Author(s)
      松本雄也
    • Organizer
      K3, Enriques Surfaces, and Related Topics
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Inseparable analogue of Kummer K3 surfaces2022

    • Author(s)
      Yuya Matsumoto
    • Organizer
      p-adic cohomology and arithmetic geometry 2022
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Linearly Reductive Quotient Singularities2021

    • Author(s)
      Yuya Matsumoto
    • Organizer
      阪大代数幾何セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Torsors over the Rational Double Points2021

    • Author(s)
      Yuya Matsumoto
    • Organizer
      野田代数幾何学ワークショップ2021
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Torsors over the Rational Double Points in characteristic p2021

    • Author(s)
      Yuya Matsumoto
    • Organizer
      第2回 超ケーラー多様体のモジュライとその周辺
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Linearly Reductive Quotient Singularities2021

    • Author(s)
      Yuya Matsumoto
    • Organizer
      代数学とその応用
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Derivations on K3 surfaces in positive characteristic2020

    • Author(s)
      Yuya Matsumoto
    • Organizer
      代数学シンポジウム
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Linearly Reductive Quotient Singularities2020

    • Author(s)
      Yuya Matsumoto
    • Organizer
      東大京大代数幾何セミナー
    • Related Report
      2020 Research-status Report
    • Invited

URL: 

Published: 2020-04-28   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi