• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Analysis of non-intersection probability of random walks using Green's function

Research Project

Project/Area Number 20K14329
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionChiba University (2023)
Kyushu University (2020-2022)

Principal Investigator

Okada Izumi  千葉大学, 大学院理学研究院, 准教授 (40795605)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2023: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords単純ランダムウォーク / ブラウン運動 / 局所時間 / capacity / local time / Green関数 / 到達確率
Outline of Research at the Start

本研究の目的は、確率解析的な手法による多次元の2つの独立な単純ランダムウォークの交叉という事象の解明である。特に、Green関数を用いて、多次元の単純ランダムウォークの極限定理を解析する。具体的には、単純ランダムウォークの軌跡についてのcapacityの極限定理や非交叉を条件づけた単純ランダムウォークの局所時間に関する極限定理を解析する。

Outline of Final Research Achievements

In collaboration with Eji Yanagida (University of Tokyo), we analyzed the heat equation in more than three dimensions with a Hardy-type potential term and a dynamic singularity with non-integer Brownian motion. In collaboration with Amir Dembo (Stanford University), we studied the law of iterated logarithms of capacity in more than three dimensions when the trajectory of a simple random walk is the domain. Furthermore, in a study with Arka Adhikari (Stanford University), we evaluated the deviation principle of capacity for 4-dimensional simple random walks.

Academic Significance and Societal Importance of the Research Achievements

多次元の単純ランダムウォークおよびその連続時間対応物のブラウン運動の非交叉の問題は、1940年代から調べられている古典的な問題として知られている。2000年代には、2次元の非交叉モデルの解析において、大きなブレークスルーとなった Schramm Loewner evolution 理論が誕生し、大きく研究が進展した、しかし、 Schramm Loewner evolution 理論は2次元特有に理論であり、他の次元では未解決な問題が多い。本研究では交叉の事象と対応関係が知られる3次元以上の単純ランダムウォークの capacity 等の解析を進めた。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (4 results)

All 2024 2023 2021

All Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results) Presentation (3 results) (of which Int'l Joint Research: 3 results,  Invited: 2 results)

  • [Journal Article] Capacity of the range of random walk: The law of the iterated logarithm2024

    • Author(s)
      Amir Dembo, Izumi Okada
    • Journal Title

      The Annals of Probability

      Volume: -

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Deviation of Capacity of the Range of Random Walk2024

    • Author(s)
      Izumi Okada
    • Organizer
      French Japanese Conference on Probability & Interactions
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Capacity of the range of random walk2023

    • Author(s)
      Izumi Okada
    • Organizer
      Stochastic Processes and Related Fields
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] The heat equation with a dynamic Hardy-type potential2021

    • Author(s)
      岡田 いず海
    • Organizer
      北東数学解析研究会
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi