• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Analysis on reproducing kernel Hilbert spaces

Research Project

Project/Area Number 20K14334
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionMeijo University (2023)
Daido University (2020-2022)

Principal Investigator

田中 清喜  名城大学, 理工学部, 准教授 (00711491)

Project Period (FY) 2020-04-01 – 2025-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2023: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
KeywordsBergman 空間 / 正則関数 / polyharmonic function / polyanalytic function / 多調和関数 / 多調和函数 / Toeplitz 作用素 / Hankel 作用素 / 再生核ヒルベルト空間 / ベルグマン空間 / テプリッツ作用素 / フォック空間
Outline of Research at the Start

本研究では、再生核ヒルベルト空間の例である多調和関数のなす重み付きベルグマン型空間、フォック型空間およびハーディ型空間を考察する。主に、再生核の挙動、アルマンジ分解と関数空間としての分解の間の対応、上記空間上のテプリッツ作用素、ハンケル作用素等の特徴付けを考察する。その研究を通じて、上記空間を包括的に考える理論を与えることを目指し、再生核ヒルベルト空間における作用素解析をする際の自然な条件を考察する。

Outline of Annual Research Achievements

本研究は,多調和関数の成す再生核ヒルベルト空間の解析を通して,さらなる一般論を構築することを目標とし,研究期間内においては具体的に polyharmonic Bergman 空間,polyharmonic Fock 空間,polyharmonic Hardy 空間における作用素解析を行うことを予定していた.ただ,昨年度から引き続き polyharmonic Fock, Hardy 空間については想定していた成果が得られず難航し,昨年度に取り組んでいた正則 Bloch型空間上における little Hankel 作用素の特徴づけ問題の研究を継続した.
Axler(1986)によって得られている「歪正則関数をシンボルに持つ Hankel 作用素が有界性であることとシンボルがBloch関数であることが同値である.」という結果を踏襲しつつ,特徴づけとして得られる関数は定義域と値域を変えることでシンボルの函数論的性質としてBloch関数以外の函数が現れることをみた.この結果は,ポテンシャル論研究集会,日本数学会にて発表し,現在投稿準備中である.上記の結果においては,シンボルに歪正則性を仮定しているが,シンボルのクラスをn-polyanalytic function に拡張してどのような関数をシンボルとすることで little Hankel 作用素と middle Hankel 作用素を特徴できるか考察した.この際にシンボルを多調和関数とみてアルマンジ分解することで,middle Hankel 作用素が有界となるシンボル関数のクラスを特定できることをn=2のときには確認できた.これらの研究は山路哲史氏(神戸高専)との共同研究である.

Current Status of Research Progress
Current Status of Research Progress

3: Progress in research has been slightly delayed.

Reason

本研究は,多調和関数の成す再生核ヒルベルト空間の解析を通して,さらなる一般論を構築することを目標とし,研究期間内においては具体的に polyharmonic Bergman 空間,polyharmonic Fock 空間,polyharmonic Hardy 空間における作用素解析を行うことを予定していた.ただ,polyharmonic Fock, Hardy 空間については想定していた成果が得られず難航した.そのため,上記の知識を生かして改めて正則 Bergman 空間,polyanalytic Bergman空間上における作用素解析に着手した.現在は細部を詰めている段階であるが,polyharmonic function の Almanzi 分解の形を用いて polyanalitic Bergman 空間上の little Hankel 作用素の特徴づけ問題を部分的に解くことはできており,少しの進展は見られた.しかし一方で大幅な予定変更が行われており,当初のさらなる一般論にはそこまで近づいていない現状はやや遅れている状況であると判断した.

Strategy for Future Research Activity

本研究は,多調和関数の成す再生核ヒルベルト空間の解析を通して,さらなる一般論を構築することを目標とし,研究期間内においては具体的に polyharmonic Bergman 空間,polyharmonic Fock 空間,polyharmonic Hardy 空間における作用素解析を行うことを予定していた.ただ,polyharmonic Fock, Hardy 空間については想定していた成果が得られず難航した.一方で,polyanalytic functionの成すBegrman空間の解析に polyharmonic Bergman 空間の話を生かすことができ,その空間では middle Hankel作用素といった polyharmonic Begrman 空間上ではうまく定義できない作用素を題材にできると思われる.そのため,当初の予定とは違うが上記の空間の間の関係を主題に取り上げたい.

Report

(4 results)
  • 2023 Research-status Report
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (6 results)

All 2024 2022 2021 2020

All Presentation (6 results) (of which Int'l Joint Research: 1 results)

  • [Presentation] Little Hankel operators from a Bloch-type space into another2024

    • Author(s)
      田中清喜
    • Organizer
      ポテンシャル論研究集会
    • Related Report
      2023 Research-status Report
  • [Presentation] Little Hankel operators on Bloch-type spaces2024

    • Author(s)
      田中清喜,山路哲史
    • Organizer
      日本数学科2024年度年会函数論分科会
    • Related Report
      2023 Research-status Report
  • [Presentation] Notes on the weighted polyharmonic Bergman spaces2022

    • Author(s)
      田中清喜
    • Organizer
      RIMS研究集会(RIMS Workshop): 再生核ヒルベルト空間を中心とした 実解析・複素解析・函数解析の総合的研究
    • Related Report
      2022 Research-status Report
  • [Presentation] Positive Toeplitz Operators between the Weighted Polyharmonic Bergman Spaces2021

    • Author(s)
      Kiyoki Tanaka
    • Organizer
      ポテンシャル論生セミナー
    • Related Report
      2021 Research-status Report
  • [Presentation] On the weighted mixed norm spaces of analytic functions2021

    • Author(s)
      Kiyoki Tanaka
    • Organizer
      Real, Complex and Functional Analysis Seminar 2021
    • Related Report
      2021 Research-status Report
  • [Presentation] Positive Toeplitz Operators between the Weighted Polyharmonic Bergman Spaces2020

    • Author(s)
      Kiyoki Tanaka
    • Organizer
      Prospects of Theory of Riemann Surfaces
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2020-04-28   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi